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Waveguide quantum electrodynamics (QED) has become 
a very active research field to study localized quantum 
emitters that are coupled to one-dimensional photonic 

channels. The platform offers novel opportunities to study interact-
ing quantum systems and promises various applications in quan-
tum information processing based on the fundamental physics of 
light–matter interaction1. Typical realizations include natural and 
artificial atoms, such as superconducting qubits and quantum dots, 
coupled to optical or microwave waveguides2–7. Well-developed 
control techniques and the possibility to engineer very high cou-
pling efficiencies make superconducting qubits an excellent plat-
form to study waveguide-mediated interactions between multiple 
emitters. The engineering capabilities of superconducting qubits led 
to the observation of a broad range of quantum optical phenom-
ena such as the Mollow triplet7, ultrastrong coupling8, generation of 
non-classical photonic states9,10, qubit–photon bound states11, topo-
logical physics12 and collective effects13,14.

Collective states appear in waveguide QED as a result of 
waveguide-mediated interactions13,15 and interference effects in 
an ensemble of emitters16. The relative phase between individual 
emitters determines whether the collective state obtains a sub- 
or super-radiant decay rate, that is, whether it becomes a dark or 
bright state. Collective bright states have been measured in various 
waveguide QED systems5,13,17–19, whereas dark states have only been 
spectroscopically observed in superconducting waveguide QED13,20. 
More recently, a multi-qubit dark state has been used to build a 
microwave cavity14; however, full coherent control of the dark state 
has not been achieved yet. Multi-qubit dark and bright states pro-
vide a possibility to investigate the dynamics of interacting quantum 
systems21,22, study many-body localization in disordered arrays23,24 
or even build a quantum computation and simulation platform25 
within an open quantum system. A key element to realize these 
concepts is coherent control of the system. The difficulty of control-
ling a dark state arises from its main property—it decouples from 

the electromagnetic environment of the waveguide. In addition, 
coherent control requires accurate knowledge of the energy and 
decay characteristics beyond the one-excitation manifold. However, 
higher-excited states of collective systems have been barely explored 
so far26.

In this work, we realize a collective dark state by exploiting 
near-field and waveguide-mediated interactions between four 
superconducting transmon qubits. The collective dark state is 
coherently controlled via two physically separate drive ports, which 
allows the adjustment of their relative phase and thus solve the 
problem of driving a state that is decoupled from the waveguide. 
By tuning the qubits to the decoherence-free frequency, we dem-
onstrate long coherence times along with full coherent control in 
an open quantum system. We utilize the state-dependent scatter-
ing of the collective bright transition to read out the ground- and 
dark-state populations.

Further, we perform a pulsed spectroscopy to characterize the 
collective two-excitation states and demonstrate the use of super-
radiant transitions to reset the dark-state qubit. Remarkably, when a 
transmon array has two or more excitations, their bosonic statistics 
become crucial for the energy spectrum. Our theoretical and exper-
imental analysis show that this leads to collective high-excitation 
states that are fundamentally different from those of two-level 
arrays14,18.

Superconducting qubits can be coupled to a microwave trans-
mission line, much like a natural atom to a nanophotonic fibre 
or photonic-crystal waveguide (Fig. 1a). The qubit decoherence 
rate Γ = (γ + γnr)/2 + γϕ is a sum of radiative decay γ into the wave-
guide modes, non-radiative energy loss γnr and pure dephasing γϕ 
(refs. 27–29). When the qubit is coupled to a waveguide, the line-
width can be extracted in scattering experiments by measuring 
the waveguide transmission or reflection, to obtain the coupling 
strength to the waveguide γ and the non-radiative decoherence rate 
γ0nr ¼ γnr=2þ γϕ
I

.
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The device sketched in Fig. 1d comprises four frequency-tunable 
transmon qubits30 acting as artificial atoms. Transmons Q1 and Q2 
are located on the left, closer to the input side of the waveguide. 
Transmons Q3 and Q4 are located on the right, closer to the out-
put of the waveguide, such that the physical separation between the 
pairs is dy = (46.0 ± 0.5) mm. Within the pairs, the transmons are 
separated by dx = (1.0 ± 0.2) mm, which sets the capacitive coupling 
strengths J12 and J34. The fundamental waveguide mode TE10 has a 
cutoff frequency of ωc/2π = 6.55 GHz (ref. 31) and its electrical field 
is polarized parallel to the dipole moment of the transmons such 
that they efficiently couple to the waveguide. Four superconduct-
ing coils can individually control the resonance frequency of all the 
transmons, such that if only a subset of transmons is used for the 
experiment, the others are tuned below the waveguide cutoff. More 
details on the physical construction can be found in Supplementary 
Sections 1 and 2.

First, we study the case where two transmons interact through 
the waveguide at a separation dy = λ/2 (Fig. 1b). The signal propagat-
ing between the transmons acquires a phase φ = 2πdy/λ that depends 
on the wavelength λ = 2πv/ω and distance dy, where v is the group 
velocity in the waveguide and ω is the angular frequency of the wave. 
Analytically, a phase difference of φ = π for our setup corresponds 
to an emission frequency ωπ/2π = (7.312 ± 0.016) GHz, where the 
uncertainty comes from the alignment error. Here, correlated decay 
into the waveguide γj;k ¼ ffiffiffiffiffiffiffiffiγjγk

p cosðφÞ
I

 is maximized15 and coherent  

waveguide-mediated interaction eJj;k ¼ ffiffiffiffiffiffiffiffiγjγk
p sinðφÞ=2

I
 is absent, 

due to the counter-periodic behaviour. Moreover, the individual 
waveguide coupling rates are denoted by γj and γk for transmons 
j ≠ k. The photon-mediated interaction leads to symmetric and 
antisymmetric states under qubit exchange, that is, the dark state 
Dnlj i ¼ gej i þ egj ið Þ=

ffiffiffi
2

p

I
 and bright state Bnlj i ¼ gej i � egj ið Þ=

ffiffiffi
2

p

I
. 

For a distance of λ/2, the phase relation of the electromagnetic field 
in the waveguide is antisymmetric (φ = π); thus, we can only excite 
the antisymmetric bright state. The dark-state symmetry is opposite 
to the field symmetry of the waveguide, eliminating the coupling to 
the drive field and decay into the waveguide.

Two nearby transmons are directly coupled through the capac-
itance between the metallic pads of their antennae. Unlike inter-
actions mediated by the waveguide, the capacitive coupling for 
transmons in this configuration has an effective 1/r3 dependence32, 
leading to short-range coupling. On resonance, an excitation can 
coherently swap between the local transmons, resulting in new 
eigenstates, particularly a symmetric state Blocj i ¼ gej i þ egj ið Þ=

ffiffiffi
2

p

I
 

and an antisymmetric state D1ð2Þ
 

¼ gej i � egj ið Þ=
ffiffiffi
2

p

I
 (Fig. 1c). 

The capacitively coupled transmons are located at the same posi-
tion with respect to the propagating field and symmetrically around 
the centre of the waveguide. Therefore, the phase of the electrical 
field is the same for both transmons φ = 0 and the drive along the 
waveguide can only access the symmetric state, in contrast to the 
scenario where the qubits are separated by λ/2.
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Fig. 1 | Collective states in waveguide QED. a, Decoherence rate Γ ¼ γ=2þ γ0nr
I

 of a quantum emitter coupled to a waveguide is given by radiative coupling 
γ and non-radiative decoherence rate γ0nr

I
. For waveguide-mediated interactions, it is important to reach the strong coupling limit (γ  γ0nr

I
). Left, realizing 

strong coupling of a natural atom to a photonic waveguide is difficult due to its small dipole moment. Right, a transmon qubit acts as an artificial atom 
and can be strongly coupled to a microwave waveguide. b, For two identical qubits with ground state |g〉 and first excited state |e〉 that are separated 
by d = λ/2, the phase difference between the qubit locations is π; thus, the non-local dark state Dnlj i ¼ egj i þ gej ið Þ=

ffiffiffi
2

p

I
 is a symmetric superposition 

state and the bright state Bnlj i ¼ egj i � gej ið Þ=
ffiffiffi
2

p

I
 is an antisymmetric superposition state, illustrated by the in-phase and out-of-phase oscillating 

transition dipole moments (arrows). The one-excitation state manifold at the bottom shows that both transition energies are degenerate but the states 
exhibit different decay properties. The dark state is isolated from the waveguide environment and therefore limited to internal losses 

γ0nr
I

, whereas the 
bright-state decoherence rate is enhanced to 2Γ. c, Two directly coupled qubits that are located at the same position in the waveguide, that is, φ = 0, 
form an antisymmetric dark state D1ð2Þ

 
¼ egj i � gej ið Þ=

ffiffiffi
2

p

I
 and a symmetric bright state Blocj i ¼ egj i þ gej ið Þ=

ffiffiffi
2

p

I
. In contrast to waveguide-mediated 

coupling, the energy degeneracy of the bright and dark states is lifted by the coherent exchange coupling rate 2J. d, Schematic of the full setup. Two 
pairs of transmon qubits are separated by an effective distance d = λ/2, combining direct coupling and waveguide-mediated interaction. The ports in the 
sidewall of the waveguide (sideports 1 and 2) enable the driving of the dark states. e, Waveguide-mediated interactions and capacitive couplings between 
two transmons form the four-qubit one-excitation state manifold. It consists of dark state |D3〉 and bright state |B4〉 with decay rate 4Γ, as well as pairwise 
dark states |D1〉, |D2〉 that are localized at the sites and do not interact with the waveguide or the other pair.
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Before tuning all the qubits into resonance, we character-
ize individual qubit and pairwise couplings. The individual qubit 
and collective bright-state radiative decay rates are extracted from 
transmission measurements, using a circle-fit routine33 on the 
complex-valued scattering parameters. In Fig. 2a, we show the 
magnitude of the normalized transmission for a single transmon, 
as well as for two and four transmons tuned to frequency ωπ. For 
two and four qubits, we observe the typical broadening of the 
linewidth, caused by superradiant decay. The capacitively coupled 
transmon pairs have direct coupling strengths J12/2π = 43 MHz and 
J34/2π = 47 MHz, which can be extracted from an avoided crossing 
(shown for Q3 and Q4; Fig. 2b). The difference in coupling strengths 
is a result of imperfections in the alignment and machining impre-
cision, which lifts the degeneracy between the local dark states |D1〉 
and |D2〉. The coherent exchange interaction lifts the degeneracy of 
|Bloc〉 and |D1(2)〉 and allows us to observe the decoupling of the dark 
state when we tune the qubits into resonance.

We calibrate the decoherence-free frequency ωπ using the dark 
state formed by two distant transmons. To control the dark states, we 
introduce two sideports that are weakly coupled to the local trans-
mon pairs (Fig. 1d). For over a decade, individual drive ports have 
been applied in on-chip circuit QED experiments34 that we adapted 
and implemented in three-dimensional waveguides. In our experi-
ment, we capitalize on the symmetry between the four qubits and 
sideport drives. The sideports provide an amplitude gradient over 
the local pairs to access the dark states |D1(2)〉, but also the possibility 
to independently adjust the relative phase ϕ between the local pairs, 
which allows us to apply a symmetric drive and access the non-local 
dark state |Dnl〉. The field of the drive port does not coincide with 
the polarization of the TE10 waveguide mode and decays exponen-
tially along the propagation direction of the waveguide; thus, the 
drive is effectively local (Supplementary Section 6).

We measure the ground-state population by employing a 
state-dependent scattering scheme, adapted from quantum 
non-demolition state detection in trapped-ion quantum comput-
ing35. If the collective system is in the ground state |G〉, we can  

coherently scatter photons between the ground state |G〉 and super-
radiant state |Bnl〉, which reduces the transmission through the wave-
guide (Fig. 2a). If the dark state |Dnl〉 is populated, the microwave 
signal is not scattered, resulting in unit transmission. By selectively 
exciting the dark state using microwave signals applied through the 
sideports with ϕ = 0, we can experimentally search for the longest 
dark-state relaxation time around the analytical decoherence-free fre-
quency and indeed find it within the uncertainty at ωπ/2π = 7.321 GHz  
(Fig. 2c).

From now on, we consider the full system; therefore, we tune 
all the four transmons into resonance such that the bright transi-
tions of the capacitively coupled pairs match the decoherence-free 
frequency ωπ. Both local two-qubit bright states interact via the 
waveguide and create the collective four-qubit states |B4〉 and |D3〉, 
whereas the local two-qubit dark states |D1〉 and |D2〉 cannot interact 
via the waveguide. These four states span the first excitation mani-
fold (Fig. 1e). In Fig. 2a, we extract the linewidth ΓB,4/2π = 60.9 Mhz 
resulting from the constructive interference of all the transmons, 
namely, ΓB,4 = ∑jΓj.

To characterize the dark state, we study the time-resolved 
dynamics. When driving the transmon array through the sideports, 
the transition amplitudes from the ground state to non-local dark 
and bright states depend on the driving phase ϕ as

Gj i ! D3j i : _Ω

2
1þ eiϕ
� �

; ð1Þ

Gj i ! B4j i : _Ω

2
1� eiϕ
� �

: ð2Þ

Rabi oscillations between |G〉 and |D3〉 are shown in Fig. 3a when 
the amplitude of the drive field Ω is increased and the phase differ-
ence between the sideports matches ϕ = 2nπ (n 2 Z

I
). For an anti-

symmetric drive with odd integer multiple ϕ = (2n − 1)π, we only 
drive the bright state |B4〉 that decays very rapidly to the ground 
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Fig. 2 | Measuring dark and bright states. a, Waveguide transmission as a function of probe frequency around the resonance of the single qubit or the 
common bright state of the hybridized two- and four-transmon systems. The single qubit linewidth Γ/2π = 14.9 MHz increases to ΓB/2π = 30.2 MHz for 
the two-qubit (local or non-local) bright state and to ΓB,4/2π = 60.9 MHz for the four-qubit bright state corresponding to super-radiant transitions. The 
inset shows a zoomed-in view of the centre of the resonances. b, Waveguide transmission as a function of qubit and probe detuning. Two-transmon qubits 
Q3 and Q4 (equivalent for Q1 and Q2, respectively; not shown) are tuned in and out of resonance as the transmission is measured through the waveguide 
for different frequencies. The upper branch yields twice the linewidth ΓB,loc = 2Γ, whereas the lower branch disappears from the transmission, effectively 
decoupling the transition from the waveguide and reducing the dark-state decay rate to non-radiative losses ΓD;1ð2Þ ¼ γ0nr

I
. c, Dark-state lifetime for a 

λ/2-separated transmon pair (here Q1 and Q4) as a function of the dark-state frequency. The frequency for maximal correlated decay ωπ/2π = 7.321 GHz 
is calibrated by measuring the dark-state decay times around the analytical value for a physical separation of dy = (46.0 ± 0.5) mm (blue region). The 
correlated decay depends on the physical separation and wavelength. When the frequency fulfills λ/2 = 2πv/ω, the dark-state symmetry is optimal; hence, 
we measure the longest decay time T1. The right axis shows the ratio between the mean value of the single-transmon coupling rates γ1, γ4 and the decay rate 
of the hybridized dark state γD ¼ 1=T1

I
.
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state with rate ΓB,4. Again, we employ the state-dependent scatter-
ing readout scheme as for the two-qubit case, now using transi-
tion |G〉 to |B4〉 to scatter the waveguide photons. To determine the 
ground-state population, we conduct a reference measurement of 
the transmitted readout pulse for the case where all the transmons 
are tuned below the waveguide cutoff frequency.

With a calibrated π and π/2 pulse, we can investigate the coher-
ence properties of the dark state. For the collective dark state, we 
measure an average relaxation time T1 = (1.71 ± 0.06) μs and coher-
ence time T2 = (0.58 ± 0.06) μs (Fig. 3b). In this system, dephasing 
and frequency fluctuations of the individual qubits cause imperfec-
tions in the dark-state symmetry. This results in a finite decay rate 
into the waveguide; thus, the dark-state relaxation time T1 depends 
on the pure transmon dephasing rate γϕ (Supplementary Section 4).

To simulate the collective dynamics shown by the black lines in 
Fig. 3a, we model the transmons and their direct couplings with the 
Hamiltonian26,36,37

ĤT=_ ¼
P4
j¼1

ωjn̂j � Uj

2 n̂jðn̂j � 1Þ
h i

þJ12 ây1â2 þ h:c:
 

þ J34 ây3â4 þ h:c:
 

;

ð3Þ

where ℏ is the reduced Planck constant, ωj is the fundamental reso-
nance frequency and Uj is the anharmonicity of the individual trans-
mon. Operators âj

I
 and âyj

I

 are the bosonic annihilation and creation 
operators of the jth transmon and n̂j ¼ âyj âj

I
 is the corresponding 

number operator. In the presence of the waveguide radiation field, 
the dynamics are governed by a master equation14,15 taking into 
account the coherent exchange interaction eJj;k

I
 and correlated decay 

γj,k between the transmons at sites j and k. The properties of the sys-
tem are then described by the effective non-Hermitian Hamiltonian

Ĥeff=_ ¼ ĤT=_þ
P
jk

eJj;k �
iγj;k
2

 
âykâj

� i
2

P
j
γnrâ

y
j âj;

ð4Þ

where parameter γnr describes the non-radiative dissipation of indi-
vidual transmons, whereas we neglect pure dephasing for simplicity.

As shown in Fig. 3a, the Rabi oscillations decay for large drive 
amplitudes. This is caused by leakage into fast decaying states of the 
higher-excitation manifold. To study this in more detail, we explore 
the two-excitation manifold of the collective four-transmon system 
(Fig. 4) by concatenating a spectroscopy pulse after populating the 
dark state |D3〉. For the spectroscopy, we change the frequency and 
relative phase to unveil the symmetry and energy of the states in 
the two-excitation manifold. When the spectroscopy pulse is reso-
nant with a transition, for example, |W5〉, |W6〉, |B13〉 or |B14〉, the 
system is reset to the ground state due to the rapid decay of these 
states dominantly via the bright state |B4〉. We denote the collective 
states by |Di〉, |Bi〉 and |Wi〉, where the letter refers to their wave-
guide radiation characteristics, namely, dark, bright or weakly radi-
ant, respectively. The subscript is an ascending enumeration based 
on their energy value. In Fig. 4, the collectiveness of these states 
is apparent in the phase dependence of the measured ground-state 
population (left), which is consistent with the simulation (right) of 
the model Hamiltonian (equation (4)).

It is essential to note that a transmon is a bosonic multilevel 
system with anharmonicity U. The many-body excited-state  
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Fig. 3 | Coherent control of the dark state. a, We apply a Gaussian-shaped pulse of total length t = 240 ns and standard deviation σ = 40 ns to observe Rabi 
oscillation between the ground state |G〉 and non-local four-qubit dark state |D3〉 as a function of Rabi frequency Ω and sideport phase difference ϕ. By 
applying the pulse through the sideports, we can independently set the phase ϕ. The ground-state population is read out by sending a 5-μs-long rectangular 
pulse through the waveguide, resonant with the transition between states |G〉 and |B4〉. The right panel shows a vertical linecut at the white dashed lines 
of the colour map for phase difference ϕ = 0 and ϕ = π. The bottom panel shows a horizontal linecut for a Rabi frequency of Ω/2π = 1 MHz. For the theory 
curve, we simulate the Hamiltonian (equation (3)) and master equation in Supplementary Information with the parameters specified in Supplementary 
Table 1. b, A symmetric excitation pulse with Rabi frequency Ω/2π = 1 MHz and relative phase difference ϕ = 0 between both sideports is used to populate 
the collective dark state |D3〉. After a variable delay time, the ground-state population is read out to find an average relaxation time T1 = (1.71 ± 0.06) μs. In a 
Ramsey experiment, we find an average coherence time of T2 = (0.58 ± 0.06) μs. On resonance (Δ/2π = 0), we observe an exponential decay; for a detuned 
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manifolds in bosonic systems are fundamentally different from 
those of two-level emitters. For example, in our case of four trans-
mons, the two-excitation manifold includes ten basis states, whereas 
two-level emitters would only have six states. The importance to dif-
ferentiate between two-level systems and transmons increases with 
the total excitation number. Here the additional states are the dou-
bly excited states of the transmons, which make an important con-
tribution to the collective superposition states |W5(6)〉 and |B(13)14〉 
(Fig. 4). States |W5〉 and |W6〉 are unique to bosonic systems, as they 
are strongly affected by the negative transmon anharmonicites and 
are not reproducible by considering two-level systems38. In general, 
in bosonic waveguide QED systems, the number of bright and dark 
states is higher and the bright states are brighter compared to the 
case of two-level emitters. The reason is a larger and more versatile 
many-body Hilbert space38.

The spectroscopy data in Fig. 4 shows that the transitions |D3〉 to 
|B13〉 and |B14〉 not only overlap with the transition of the dark-state 
qubit |G〉 to |D3〉 but also share the same phase condition on the 
drive. Consequently, we attribute the damping of the Rabi oscil-
lations in Fig. 3a to the population of these states as we increase 
the drive amplitude. Remarkably, this leakage effect can be dra-
matically reduced by increasing the coupling to the waveguide so 
much that the unwanted excitation to this state can be adiabatically 
eliminated39. Ideally, increasing the waveguide coupling does not 
affect the coherence and lifetime of the dark state; only the states 
outside the decoherence-free subspace decay faster. In contrast to 
conventional solid-state qubits, a symmetry-engineered multi-qubit 
system makes it possible to independently control the decay proper-
ties of the leakage states of the computational states (Supplementary 
Section 4 and 5).

In conclusion, the experiment demonstrates that collective dark 
states constitute a resource for coherent quantum information and 
can be controlled by local drives with an adjustable phase relation. 
The collective four-transmon system comprises a one-excitation 
state manifold with long-lived dark states, as well as one rapidly 
decaying bright state. In particular, we achieve an effective protec-
tion from the waveguide, leading to a decrease in the relaxation rate 
by a factor of 160 compared with the single-qubit coupling rate or a 
factor of 650 compared with the collective bright state. The degen-
erate bright state can be used to read out the system. Although in 
conventional resonator-based architectures, detuning between the 
readout cavity and qubit plays an important role for its coherence 
time, the experiment shows that the protection can be engineered 
by taking into account the symmetry properties of the system as 
both transitions are resonant. Unlike in previous experiments, the 
observation of the weakly radiant states |W5〉 and |W6〉 is a direct 
manifestation of the transmons’ bosonic nature and demonstrates 
the necessity to go beyond the two-level approximation when trying 
to engineer many-body physics with artificial atoms38.

Looking forward, coherent control of multi-qubit dark states 
opens up the possibility to investigate the dynamics of interacting 
quantum many-body systems21,22, to study many-body localiza-
tion in disordered arrays23,24 or even realize a quantum computa-
tion and simulation platform within an open quantum system25. On 
one hand, the adiabatic elimination of higher-excited states prom-
ises the possibility to further optimize the coherent control of the 
dark state; on the other hand, the two-excitation manifold can be 
used to reset the dark-state qubit and transfer quantum information 
into itinerant photons. This mechanism is a source of cluster-state 
creation40, whereas the cascaded decay can be utilized to study 
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Fig. 4 | Phase-sensitive spectroscopy of the two-excitation manifold. Top right, pulse sequence where we apply a Gaussian-shaped π pulse that populates 
the dark state |D3〉, where the relative phase on the sideports is set to ϕ0 = 0 and the frequency is set to the decoherence-free frequency ωπ. Then, we 
concatenate a long spectroscopy pulse of length t = 1.2 μs (σ = 200 ns) with variable frequency ω/2π and phase ϕ. We record the waveguide transmission 
with a 5-μs-long rectangular readout pulse to obtain the measured (left) and simulated (right) ground-state population. The states of the two-excitation 
manifold have to be coupled to the dark state |D3〉 and possess a finite decay rate to the bright state |B4〉, which then decays to the ground state |G〉. 
Therefore, we measure a high ground-state population when the spectroscopy pulse is resonant with a transition that can be driven from |D3〉. The ability 
to drive the collective states depends on the spectroscopy phase, whereas local states can be driven with any phase. There are six other states in the 
two-excitation manifold that are not visible in the spectroscopy since they cannot be driven from the dark state |D3〉 or do not decay to the bright state 
|B4〉. The parameters for the simulation are given in Supplementary Table 1. To observe the local dark states |D1,2〉 in the simulation, we have included 
an amplitude gradient of the local drives, such that the power on transmons Q2 and Q4 is three-quarter that on Q1 and Q3. This asymmetry produces 
an additional driving term that is always antisymmetric with respect to the exchange of transmons within the pair. These states do not show a phase 
dependence as they are only coupled to one drive port. During the time of the spectroscopy pulse, which is of the same order as the lifetime of |D3〉, a part 
of the population decays to the ground state. As a consequence, the phase-sensitive transition between states |G〉 and |D3〉 is visible.
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entanglement between photons of different frequencies. Finally, the 
interplay between long-lived subradiant states and weakly radiative 
states can give new insights into incoherent scattering properties 
and photon–photon correlations41–46.
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