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We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric
nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability
from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere,
thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields.
In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining
larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the
resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high
density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber
and coupled to a high-finesse microsphere cavity.
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I. INTRODUCTION

Both a two-level atom and a lump of dielectric material
are polarizable objects whose motion can be manipulated
with optical light [1], a feature that has been exploited in the
fields of ultracold atoms [2] and optical tweezers [3]. A recent
experiment [4] has shown that the force from quantum emitters
embedded in a dielectric nanosphere can be observed—even
in liquid. In this article we go a step further and argue that
it is experimentally feasible to have a scenario where the
optical dipole force due to the embedded quantum emitters is
stronger than the bulk dipole force. This would allow one to use
repulsive optical potentials for dielectric nanospheres, by using
the internal structure of the quantum emitters, to trap them in
evanescent fields analogous to what can be done with ultracold
atoms [5]. We propose to use this for dispersive cavity quan-
tum optomechanics [6] with optically levitated nanospheres
[7–13]. In addition we show that it might be possible to
reach the so-called strong single-photon cooperativity regime
[6,14–19], in the resolved sideband regime [6], by coupling the
levitated nanospheres to a high-finesse optical microcavity, at
room temperature.

In dispersive cavity quantum optomechanics [6], the single-
photon coupling g0 is proportional to αb/(VcM

1/2), where
α is the real part of the polarizibility, b is the gradient
of the cavity field mode, Vc is the cavity volume, and
M is the mass of the mechanical oscillator. Our proposal
aims at simultaneously combining salient features that have
been demonstrated in independent experiments: (i) placing
a dielectric nanobject in the near field of a microcavity
to have larger b and smaller Vc [20], (ii) use a set of N

quantum emitters to have larger α/M1/2 ∝ √
N [21,22], and

(iii) optically levitate a nanosphere in high vacuum to have a
high mechanical quality factor at room temperature [13] with
a sufficiently large trap frequency to enable cavity cooling
in the resolved sideband regime [11]. This conjunction of
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features could be used for observing non-Gaussian physics of
mechanical nanooscillators [14–19], measuring short-distance
forces [23], and migrating to quantum optomechanics cutting-
edge experiments and proposals done with ultracold atoms
in near fields [24–33]. We remark that the increase of the
polarizability of diamond by doping it with a high density of
color centers might also be used to boost the optomechanical
coupling in setups using clamped cantilevers, membranes,
or photonic crystals made of diamond [34–36]. See [37] for
similar ideas.

The paper is organized as follows. In Sec. II we discuss
and compare the polarizability of quantum emitters to the
bulk polarizability of the nanosphere. We show that for a
particular type of color centers in diamond, the polarizability
of the quantum emitters can overcome the bulk polarizability.
Assuming this regime, we describe in Sec. III the optical trap
obtained using a bi-chromatic field supported by a nanofiber.
In Sec. IV we show that by placing a microcavity in close
proximity to the nanosphere it is possible to achieve both
the resolved sideband and the strong single-photon quantum
optomechanical cooperativity regime. We conclude in Sec. V.

II. QUANTUM EMITTER POLARIZABILITY

A. General expression

Let us compare the polarizability of a quantum emitter
(called quantum polarizability hereafter) with the bulk po-
larizability of a dielectric nanosphere. In general terms, the
time-averaged dipole force describing the interaction of a
monochromatic field E(r,t) of frequency ω with a particle
of polarizability α is given by [1]

F(r) = αE0(r)
∇E0(r)

2
, (1)

where E2
0(r) = 2〈|E(r,t)|2〉 (here 〈·〉 denotes time average). In

the case of a bulk dielectric nanosphere of refractive index n

and radius R, the polarizability αs is given in the point dipole
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approximation by

αs = 3ε0V
n2 − 1

n2 + 2
, (2)

where ε0 is the vacuum permittivity and V = 4πR3/3. The
validity of the point dipole approximation, usually assumed
by the condition R � 2πc/ω for a focused Gaussian beam,
can be verified in the context of near fields using a multimodal
decomposition for the near field [38,39] and the dielectric
sphere. Using typical experimental parameters one can show
that the interaction can be very well approximated by the point
dipole term.

For a two-level state quantum emitter with transition
frequency ω0, dipole moment d, Rabi frequency � =√

2|〈e|d · �ε|g〉|E0(r)/�, spontaneous emission in free space
�0 = d2ω3

0/(3ε0π�c3) (accounting for an orientational aver-
age for the dipole moment |〈e|d · �ε|g〉|2 = d2/3), spontaneous
emission inside the dielectric nanosphere � ≈ n�0 [40], and
transverse decay rate γ = �/2 + γc, where γc accounts for the
additional coherence decay (inhomogeneous broadening), the
quantum polarizability αq is given by [41]

αq = −2	d2�

3��2γ

s

s + 1
. (3)

Here 	 ≡ ω − ω0 is the detuning and s ≡ �2/[γ�(1 +
	2/γ 2)] the saturation parameter. This description uses the ro-
tating wave approximation, which is valid provided |	| � ω0,
and the Born-Oppenheimer approximation, which is valid
provided the motional dynamics are much slower than the
electronic dynamics of the quantum emitter. Note that αq can
be maximized to αq = −d2/(3�	) for the optimal detuning
|	| = γ [1 + �2/(γ�)]1/2 that leads to a saturation parameter
s = �2(�γ )−1(1 + 	2/γ 2)−1 � 1. The optimal ratio between
the two polarizabilities η ≡ |αq/αs | can thus be written as

η = λ3

R3

2

(4π )3

n2 + 2

n2 − 1

�

nγ

1√
1 + �2/(γ�)

. (4)

Assuming that in the nanosphere one has a number of embed-
ded identical quantum emitters given by N = ρqV , where ρq is
the volume density of emitters, and that the variation of fields
within the nanosphere is negligible such that each quantum
emitter identically interacts with the field (point-particle
approximation), the total quantum polarizability will be larger
than the bulk polarizability when Nη > 1. Alternatively, an
effective complex refractive index n̄ can be defined from the
complex polarizability ᾱq of the ensemble of emitters by using
the Lorentz-Lorenz relation ρqᾱq/(3ε0) = (n̄2 − 1)/(n̄2 + 2)
for which one would obtain a value close to 2i near the
resonance of the quantum emitters. It is important to note
that we have not taken into account cooperative effects. These
effects could have a significant impact on the dipole force and
consequently polarizability ratio η.

B. Color centers in diamond: Silicon-vacancy centers

Let us consider a levitated nanodiamond (ND) [42–45] for
its remarkable optical properties and the large variety of color
centers they have [46,47], which act as quantum emitters. In
particular, the silicon-vacancy (SiV) centers, consisting of a

FIG. 1. Ratio Nη (solid dark line) of the total quantum polar-
izability over the dielectric polarizability for a nanodiamond with a
high density of SiV. Larger intensities both increase the saturation of
the quantum emitters and the internal temperature (solid light line)
leading to a reduction of the quantum polarizability. The properties of
the nanodiamond and the SiV are listed in Appendixes A 1 and A 2,
respectively. We remark that since the SiV centers are embedded in
the ND, we accounted for the Lorentz local field correction [51],
(n2 + 2)/3, for the field inside the ND.

silicon atom and two adjacent vacancies, have the following
favorable properties for achieving Nη 
 1: (i) strong dipole
moment [48], (ii) high densities [48], and (iii) very good
indistinguishability of different SiV [49].

The polarizability of the quantum emitters varies linearly
with the intensity of the incident field for small intensities
(�2 � γ�) leading to a constant ratio η. For larger intensity,
this ratio decreases due to saturation effects from the quantum
emitters. The incident intensity also has an impact through the
dependence of the emitters with the internal temperature of
the ND [50] (see Appendix A 2). In the context of levitation,
this effect is important as the ND can reach high temperatures
even with low intensities; see Fig. 1. In order to account for this
effect, the internal energy of the ND is obtained as a function
of the absorption rate of the incident laser photons, γl , the
absorption rate of the blackbody radiation of the environment,
γa , and the blackbody emission rate, γe, is given by [52]

mcmṪi = γl +
∫

dω′[γa(ω′) − γe(ω′,Ti)]�ω′, (5)

where Ti is the internal temperature of the ND, m its mass,
and cm its specific heat. For an incident laser of intensity I and
frequency ω, and an environmental temperature Te, these rates
are given by

γl = 4πIωR3

c
Im

[
ε(ω) − 1

ε(ω) + 2

]
, (6)

γa = 4(ω′R/c)3/π

exp(�ω′/KbTenv) − 1
Im

[
ε(ω′) − 1

ε(ω′) + 2

]
, (7)

γe = 4

π

(
ω′R
c

)3

exp

(
− �ω′

KbTi

)
Im

[
ε(ω′) − 1

ε(ω′) + 2

]
. (8)

The steady-state temperature (Ṫi = 0) is determined as a
function of the incident laser intensity (see Fig. 1) using
the rate-balance equation for the internal energy [Eq. (5)].
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Accounting for the temperature dependence of the linewidth,
lifetime, and transition of the SiV centers, see Appendix A 2,
the total quantum polarizability for a ND containing a large
density of centers clearly overcomes the bulk polarizability
for low intensities (see Fig. 1). The internal temperature will
be largely modified by the nonradiative properties of the
embedded quantum emitters which we have not accounted
for here. In particular, the main contribution will be from
the limited quantum efficiency of SiV centers and, to a
lesser extent, from its emission in the phonon sidebands.
In addition, it is important to note that the experimental
values used to estimate the emissivity of the diamond (see
Appendix A 1) are limited to the 2.5–6.5 μm range leading
to an underestimated blackbody emission rate. The internal
temperature of the nanodiamond could be further reduced by
coating its surface with a small layer of glass [44] providing
much higher emissivity in the infrared. By achieving much
lower internal temperatures, the optical properties of the SiV
centers will significantly improve.

III. NEAR-FIELD OPTICAL TRAP

In the following we assume that the quantum polarizability
dominates Nη 
 1 and discuss in a general way how this can
be used to levitate a dielectric nanosphere in evanescent fields.
In analogy to bichromatic atomic optical traps [53–55], we
consider an evanescent field in vacuum of the form

E(r,t) = E1(r)�ε1e
−iω1t + E2(r)�ε2e

−iω2t+φ + c.c. (9)

The exponentially decaying electric-field amplitudes are given
by E1(2)(r) = Ef (x,y)e−�1(2)z, where �1(2) is the field decay
rate and Ef (x,y) the field amplitude at the dielectric surface.
The polarization of each mode is given by �ε1(2) and φ is the
phase difference between the two modes at t = 0. This field
can be obtained from a nanofiber and is different from the
cavity field which will provide the backaction. We consider
the symmetric driving ω1 = ω0 − 	 and ω2 = ω0 + 	 with
	 > 0 and define the beating frequency δ = ω2 − ω1 = 2	.
We are interested in the interaction of such field with a
two-level quantum emitter when far-detuning or weak driving
for the two modes is not assumed. This is an unusual scenario
for most of the atomic trapping experiments with evanescent
fields [5]; notwithstanding, this was studied before both
experimentally and theoretically; see for instance [56–60]
and reference therein. One can analytically calculate the
time-averaged dipole force considering that the beating is
much faster than the dynamics of the mechanical motion.
This is done solving a recursive equation obtained with a
Floquet analysis. As shown below, one encounters that the
total dipole force is not simply the sum of the forces that
each mode would exert in the absence of the other mode
but a more involved expression containing mixing terms that
reflect the intricate interplay between the red and blue driving
fields.

In particular, for a bichromatic field [Eq. (9)], the Hamilto-
nian of the system in the rotating frame defined by the unitary
Û (t) = exp [iω1|e〉〈e|t] reads

Ĥ = �	|e〉〈e| − �deg · E(r,t)eiω1t σ̂+ − H.c. (10)

Here deg = 〈e|d|g〉 and r is the position of the two-level
system. Applying the rotating wave approximation (valid
provided 	 � ω0) this Hamiltonian can be written as

Ĥ = −�	|e〉〈e| + ��1(r)

2
[1 + �(r)e−iδt ]σ̂+ + H.c.

(11)

where we have defined

�1(2)(r) ≡ −2

�
deg · �ε1(2)E1(2)(r), (12)

which is also assumed to be real, and �(r) = �2(r)/�1(r).
Hereafter we omit the r dependence to ease the notation.
Assuming that the internal electronic dynamics of the two-level
system are much faster than the motional dynamics (Born-
Oppenheimer approximation), the force is given by

F = −∇
[

��1

2

(
1 + �e−iδt

)]〈σ̂+〉 + H.c., (13)

where the expected values are calculated for the electronic
steady state. Following [57] the steady-state solution can be
expanded as a Fourier series in terms of δ (Floquet’s analysis)
such that

u(t) ≡ 〈σ̂−〉 =
∞∑

n=−∞
une

inδt , (14)

v(t) ≡ 〈σ̂+〉 =
∞∑

n=−∞
vne

inδt , (15)

w(t) ≡ 〈σ̂ z〉 =
∞∑

n=−∞
wne

inδt . (16)

The Fourier coefficients are obtained by solving the optical
Bloch equations in the steady state, namely

0 = −[γ + iδ(n + 1/2)]un + i
�1

2
(wn + �wn+1),

0 = −[γ + iδ(n − 1/2)]vn − i
�1

2
(wn + �wn−1),

0 = −(� + inδ)wn − i�1(vn + �vn+1)

+ i�1(un + �un−1) − �δn0. (17)

Then, by further assuming that δ is much larger than the
motional frequency (secular approximation), one can time
average Eq. (13) for the steady state to obtain

F = −�∇�1

2
(v0 + u0) − �∇(�1�)

2
(v1 + u−1). (18)

Note that the time-averaged population of the excited state pe

will be given by

pe = w0 + 1

2
= i�1

2�
[u0 − v0 + �(u−1 − v1)]. (19)

In addition, Eq. (17) leads to the following recursive equation
for wn:

anwn + bnwn+1 + cnwn−1 = dn, (20)
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where

an = −� − inδ − 4�2
1(γ + inδ)(1 + �2)

4γ 2 + i8nγ δ + δ2(1 − 4n2)
, (21)

bn = − 2��2
1

2γ + iδ(2n + 1)
, (22)

cn = − 2��2
1

2γ + iδ(2n − 1)
, (23)

dn = �δn0. (24)

By obtaining the set of wn one can readily calculate un and
vn. This recursive equation can be exactly solved by fixing a
cutoff N � 0 such that wN+1 = w−N−1 = 0. The value of N
is chosen such that the value of the physical quantities that are
calculated converge.

In the lowest order in the Floquet analysis, namely for
N = 0, one obtains

Fq = �	
�

2γ

s1g1 − s2g2

1 + s1 + s2
. (25)

We defined s1(2) ≡ �2
1(2)(�γ )−1[1 + (	/γ )]−2, g1(2) =

∇ log �1(2)(r), and �1(2)(r) = 2|deg · �ε1(2)E1(2)(r)|/�. The
population of the excited state of the quantum emitter is
given by pe = [1 − (1 + s1 + s2)−1]/2. The total optical force
exerted on the nanosphere can then be estimated by using
FT ≈ NFq + Fs , with Fs(r) = αsE0(r)∇E0(r)/2 the optical
dipole force due to the bulk polarizability.

In order to achieve near-field levitation, the blue-detuned
field (	 > 0) provides repulsive optical forces to prevent the
nanosphere from adsorbing to the surface producing the near
fields. Consequently it is necessary to account for the Casimir-
Polder force to fully capture the trapping potential. In order to
simplify the calculation, we have approximated the surface as
a semi-infinite half space of dielectric material with dielectric
constant ε(ω). The Casimir-Polder potential for an object of
polarizability α(ω) at a distance z from the surface takes the
form [61,62]

U
cp
q(s)(z) = �

8c2π2ε0

∫ ∞

0
dx x2αq(s)(ix)

∫ ∞

x/c

dk e−2kz

×
[
k − g(x,k)

k + g(x,k)
+

(
1 − 2k2c2

x2

)
ε(ix)k − g(x,k)

ε(ix)k + g(x,k)

]
,

(26)

where

g(x,k) =
√

x2

c2
[ε(ix) − 1] + k2. (27)

For the polarizability of the quantum emitters with a transition
frequency ω0 we use αq(ω) = 2d2ω0[3�(ω2

0 − ω2)]−1. For a
dielectric sphere of refractive index n and volume V we
use αs(ω) = 3ε0V (n2 − 1)/(n2 + 2). Considering silica for
the semi-infinite half spaces, see the Appendix and [63], one
can numerically calculate the Casimir-Polder force. The total
Casimir-Polder potential for a nanodiamond containing N

quantum emitters is obtained as

Ucp(z) = NU cp
q (z) + U cp

s (z). (28)

FIG. 2. Trapping potential for a 30 nm ND accounting for the
dipolar forces acting on the quantum emitters and the ND along
with gravity and the Casimir-Polder forces (see Appendix A 3 for
the experimental parameters). The trapping potential obtained using
the dipole force for the bichromatic field using the second order
in the Floquet analysis (solid line) shows an important deviation
from considering the dipole force from the two evanescent fields
independently (light solid line). For reference, the force without
accounting for the Casimir-Polder forces is represented with the
dashed line.

Finally, one can then estimate the total force exerted on the
nanosphere by using FT ≈ NFq + Fcp + Fs + Fg . Here Fcp =
−∇Ucp is the Casimir-Polder force and Fg is the gravitational
force along the z axis.

The most efficient near-field trap is obtained using the
optimal detuning, |	| = γ [1 + �2/(γ�)]1/2, for the quantum
emitters to maximize the polarizability ratio η. The trapping
potential for the particular case of a 30 nm ND with embedded
SiV centers is shown in Fig. 2. The possibility to levitate the
nanosphere using near fields, which provides much stronger
optical forces, allows the use of low intensities and thereby the
reduction of heating observed when using a focused Gaussian
beam [64]. The dephasing of the SiV, varying as the cube
of the internal temperature [50], remains sufficiently low to
obtain a total quantum polarizability much larger than the bulk
polarizability. On a practical level, the trap depth is particularly
adapted to the use of mobile optical fiber traps as they provide
a cooling of the center-of-mass motion down to 30 K with a
relatively simple apparatus [65]. The experimental parameters
are described in Appendix A 3.

IV. CAVITY OPTOMECHANICS

A. Optomechanical coupling

Let us now address the optomechanical coupling between
the levitated nanosphere and an optical cavity mode (see
Fig. 3). This is achieved by placing the sphere in the evanescent
field of an optical microcavity mode with frequency ωc and
creation (annihilation) operator â† (â). The total Hamiltonian
is then given by

Ĥ

�
= ωt b̂

†b̂ + ω0|e〉〈e| + ωcâ
†â + �c(ẑ)

2
(âσ̂+ + â†σ̂−).

(29)
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FIG. 3. Schematic illustration of the general scenario that is
considered: a dielectric nanosphere with a set of two-level quantum
emitters is trapped using a bichromatic evanescent field at a distance
z from a surface. In the inset of the figure the level structure
of an individual quantum emitter of transition frequency ω0 and
excited-state linewidth γ is illustrated. The transition is driven by
a bichromatic field with symmetric red and blue detuning ∓	 > γ ,
with Rabi frequencies �1 and �2, respectively. The cavity field mode
with vacuum Rabi frequency �c is detuned by 	c > γ .

Here we used the rotating wave approximation, which is
valid provided |	c|,�c � ω0, where ωc − ω0 ≡ 	c. The
vacuum Rabi frequency is given by �c(ẑ) = �cξ e−�cẑ with
�c = 2d[�ωc/(3Vcε0)]1/2/� and �c the decay rate of the
cavity’s evanescent field. Here Vc is the cavity mode volume,
ẑ = zzp(b̂† + b̂) is the displacement operator along the z axis
from the equilibrium position zt , with zzp the zero point
motion, and ωt is the mechanical frequency. The coefficient
ξ accounts for the particular mode shape and polarization
type of the cavity such that Ecav = ξ [�ωc/(Vcε0)]1/2 is the
vacuum field at the cavity-vacuum interface [66]. By further
assuming |	c| > γ 
 �c one can make a Schrieffer-Wolf
transformation to obtain

Ĥ

�
= ωt b̂

†b̂ +
[
ω0 − �2

c(ẑ)

4	c

â†â

]
|e〉〈e| + ωcâ

†â

− �2
c(ẑ)

4	c

σ̂ zâ†â. (30)

Since �2
c/(4	c) � γ , the atomic level shift due to the cavity

field will be irrelevant and thus can be safely dropped. By
Taylor expanding the vacuum Rabi frequency around the
equilibrium position, one obtains

Ĥ

�
= ωt b̂

†b̂ + ω0|e〉〈e| + ωcâ
†â − g0

σ̂ z

ω0
â†â(b̂† + b̂). (31)

By considering that the single-photon coupling g0 is much
smaller than the frequency of the internal dynamics one
replaces the σz by the 〈σz〉 = w0 calculated in the steady state
considering the bichromatic driving. Therefore, we arrive at
the final single-photon optomechanical coupling Hamiltonian

Ĥ

�
= ωt b̂

†b̂ + ω0|e〉〈e| + ωcâ
†â − g0â

†â(b̂† + b̂), (32)

where the single-photon optomechanical coupling due to N

quantum emitters is given by

g
q

0 = −N (2pe − 1)ξ 2e−2�cz
′ �2

c

2	c

�czzp. (33)

Note that the coupling due to the quantum emitters would
vanish should the quantum emitters be totally saturated
(pe = 1/2), leaving only the contribution due to the bulk
polarizability from the nanosphere [20].

B. Resolved sideband regime

In order to cool down the center of mass of the mechanical
mode into the ground state using the optomechanical coupling
to the cavity [67–69] one requires the resolved sideband regime
ωt � κ . In this context, the use of evanescent field provides
much stronger gradient compared to focused Gaussian beams,
allowing for larger mechanical frequencies. To verify that the
resolved sideband regime can be reached, it is necessary to
consider the impact that quantum emitters have on the optical
quality factor through the scattering of cavity photons. For N

emitters, this is given by

κsc = N�ξ 2e−2�cz
′ γ�2

c

2
(
γ 2 + 	2

c

) . (34)

Here, we assumed the saturation parameter from the
cavity vacuum field is much smaller than 1, scav =
ξ 2�2

c(�γ )−1[1 + (	/γ )]−2 � 1. In order to reduce this effect,
we used a far-detuned cavity, taking advantage of the excellent
optical property of fused silica in the near infrared (see
Appendix A 4). The cavity loss rate is then obtained as
κ = 2πc/(Qλcav) + κsc.

By maintaining the ND away from the cavity surface, the
impact of the embedded quantum emitter on the quality factor
allows one to maintain a strong optical trap in the resolved
sideband regime with an optomechanical coupling comparable
to the state of the art (see Fig. 4 and Appendix A 5). Upon

FIG. 4. Optomechanical coupling for a 30 nm ND while in
the resolved sideband regime. The best optomechanical coupling is
obtained at low intensity as it provides a small excited-state population
[minimizing the cavity scattering losses; see Eq. (34)] and low
inhomogeneous broadening thanks to a moderate internal temperature
[maximizing the coupling; see Eq. (33)]. For the parameters see
Appendix A 5.
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FIG. 5. Optomechanical coupling and ND position. By varying
the intensity ratio I2/(I1 + I2), the position of the 30 nm ND can
be controlled in order to the reach the optimum optomechanical
coupling. As the ND is brought close the cavity, the cavity scattering
losses are greatly increased by the presence of the quantum emitters.

reaching a low center-of-mass temperature, the coupling can
be further increased by using lower intensities, i.e., smaller
dephasing (by maintaining a low internal temperature). As
illustrated in Fig. 4, the coupling can be varied by one order
of magnitude by changing the total intensity while remaining
in the resolved sideband regime. Since the position of the
nanodiamond is not changed, the optomechanical coupling
decreases for large intensities due to the increase of both the
internal temperature and the excited-state population.

Another advantage of such bichromatic evanescent trap
resides on the possibility to accurately control the position
of the ND by simply varying the ratio of intensity between
the two fields. Consequently, it is possible to further increase
the optomechanical coupling by placing the ND closer to the
cavity. Figure 5 illustrates the evolution of the optomechanical
coupling as a function of the intensity ratio. For each point, the
total intensity is the lowest one still maintaining the resolved
sideband regime. As the intensity of the repulsive field is
increased, the ND is pushed further away from the nanofiber,
i.e., closer to the cavity. This allows one to increase the
optomechanical coupling up until the cavity scattering losses
reach values comparable to the unloaded cavity losses. For
shorter cavity-ND distances, the ratio of the optomechanical
coupling to the total scattering losses is reduced. In addition,
higher intensities are required to achieve the resolved sideband
regime, which increases the population of the excited state pe

and hence reduces the coupling [Eq. (33)].

C. Strong single-photon optomechanical cooperativity

The challenging strong-single photon optomechanical cou-
pling regime is achieved when g0 � κ,�m [6], where κ is
the decay rate of the optical cavity mode and �m is the
decoherence of the center-of-mass mechanical motion. The
leading contribution to �m in optically levitated nanospheres is
the recoil heating due to scattering of photons [8,10,70]. In our
case there will be the additional and dominant contribution due
to scattered photons from the quantum emitters. One can esti-
mate that �m = �

q
m + ∑2

i=1 �s,i
m , where the contribution from

the quantum emitters is [71,72] �
q
m = N (2/5)(ω0zzp/c)2R

q
sc

FIG. 6. Trapping potential for a 30 nm ND using two blue-
detuned fields. Two blue-detuned fields, one from the nanofiber
and from the cavity are used to trap the ND. The large detuning,
|	| = 1 × 1015 Hz, allows one to maintain a very small excited-state
population (see Appendix A 6 for the experimental parameters). To
provide confinement on the transversal dimensions, an additional
weak red-detuned field from the nanofiber can be used.

with the scattering rate from a single quantum emitter being
R

q
sc = �pe, and the contribution due to the bulk polarizability

[8,10,70] �s
m = ∑2

i=1(2/5)(ωizzp/c)2Rs
sc,i with the scattering

rate given by Rs
sc,i = |αs |2E2

i (rt )(ωi/c)3/(12πε0�) (rt is the
trapping position of the sphere). Although much weaker, the
recoil due to the blackbody radiation from the nanosphere can
be obtained from the blackbody emission rate Eq. (8) as �BB

m =∫
dω′[(2/5)(ω′zzp/c)2γe(ω′)]. One can now define the single-

photon optomechanical cooperativityC = g2
0/(κ�m). We show

below that by taking advantage of the quantum polarizability
from quantum emitters embedded in the nanosphere, it is
possible to obtain the strong single-photon optomechanical
cooperativity regime C > 1 while maintaining the resolved
sideband regime.

In order to reduce the impact the quantum emitters have
on the cavity losses, large detunings can be used to trap
the ND. This approach, inspired from the far-off-resonance
trapping (FORT) for cold atoms [73], relies on the use
of a far-detuned near-field trap to reduce the excited-state
population pe. In this case, one constraint remains: the force
from the quantum emitters should remain larger than the bulk
one in order to provide blue-detuned repulsive fields. Another
consequence of this configuration is the important reduction of
the overall forces. To compensate for this, we propose to use
an additional blue-detuned field from the microsphere cavity.
Such field plays the role of the red-detuned field from the
nanocavity in preventing the ND from falling on the cavity
under the Casimir-Polder forces. By using a far-off-resonance
blue-detuned field, one can achieve a much stronger field
gradient, further improving the trapping efficiency. Despite
the added complexity of using trapping fields from both
the nanofiber and the cavity, this configuration allows for
maintaining the resolved sideband regime while significantly
reducing the population of the excited state by using a large
detuning. In particular, Fig. 6 shows the trapping potential (see
Appendix A 6 for the experimental parameters). The 30 nm ND
is then maintained in the near field of the cavity allowing one to
reach both the resolved sideband regime and the single-photon
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strong cooperativity C � 1; see the Appendix for the set of
experimental parameters.

V. CONCLUSIONS

In this article we have shown that the polarizability given
by a set of quantum emitters embedded in a nanosphere can
overcome its bulk polarizability. This immediately allows
us to use repulsive optical forces and levitate a nanosphere
using evanescent fields. We have then discussed how this
can be used for levitated quantum optomechanics using an
evanescent coupling of the center of mass of the nanosphere
with a microcavity mode. Due to a large polarizability to mass
ratio, large cavity field mode gradient, and a smaller cavity
mode volume, one could achieve the strong single-photon
cooperativity in the resolved sideband regime. A case study
has to be done considering a nanodiamond with a high density
of embedded SiV color centers at room temperature. Also, this
work could be extended to a recently discovered color center
in diamond, the germanium-vacancy center [74], as it provides
significantly better optical properties at room temperatures.

We remark that, as suggested in the recent experiments
reported in [4], collective effects from the high density of
quantum emitters embedded in the nanodiamond seem to be
relevant. In particular, these effects could significantly modify
the dipole force acting on the quantum emitters but also the
total radiative emission of the emitters. The latter is a key
point since otherwise the imperfect quantum efficiency of
single quantum emitters could heat up the nanodiamond to
unfeasible temperatures. The theoretical understanding and
potential applications of collective effects in this scenario,
namely a levitated sphere smaller than the optical wavelength
with such a high density of quantum emitters that dipole-dipole
interactions have to be taken into account [75,76] in addition
to inhomogeneous broadening, is a very interesting and
challenging further research direction that will be addressed
elsewhere.
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APPENDIX: EXPERIMENTAL PARAMETERS

In the following we list all the experimental parameters
needed to make the analysis of the experimental feasibility.
We indicate the free parameters with a star symbol.

1. Nanodiamond

� Radius nanosphere: R = 15 nm.
� Density of quantum emitters: ρq = 1.4 nm−3. This

density is an upper value extracted from the experimental
measurements in [48]; samples with smaller SiV densities
would also fulfill Nη 
 1.

(i) Number of quantum emitters: N = 1.98 × 104.
(ii) Real part of the refractive index: Re[n] = 2.4 [77]. For

the blackbody radiation, absorption, and emission, the leading

term in the integral for moderate temperature (Tint,Tenv �
2000) arises from low-energy radiation (ω � 2 × 1015 Hz).
This constant value for the real part of the refractive index of
diamond was consequently used.

(iii) Imaginary part of the refractive index in the spectral
region 500–1100 nm: Im[n] = 10−8. This value is estimated
from the values of extinction available in the literature (3.8 ×
10−7 at 436 nm [77], �2 × 10−8 at 532 nm, and �9 × 10−9 at
1064 nm [78]).

The spectral dependence of the imaginary part of the
refraction used is given by

Im[n(x)] = 10−8 + 1

4πx
[f1(x) + f2(x) + f3(x)], (A1)

where

f1(x) = 15 exp

[
−

(
2100 − x

2 × 105

)]
, (A2)

f2(x) = 1.5 exp

[
−

(
3200 − x

2 × 105

)]
, (A3)

f3(x) = 0.35 exp

[
−

(
4400 − x

2 × 105

)]
, (A4)

and x ≡ ω/(100 × 2πc). Such function provides a satisfactory
fit of the experimentally measured values in the wavelength
range 3–6.5 μm [77]. In the absence of values for the extinction
coefficient in the 6.5–20 μm, we assumed a value of 10−8

which leads to a significant underestimation of the blackbody
radiation of the nanodiamond. The complex dielectric function
of diamond ε(ω) was obtained using this fit.

2. Quantum emitter: Silicon vacancy

(i) Transition frequency: ω0/2π = 4.01 × 1014 Hz.
Its bulk temperature’s dependence is [50]

λ0(T )

1 nm
= 737 + 19.2 × 10−8

(
T

1 K

)2.78

, (A5)

where λ0 = 2πc/ω0.
Its bulk temperature’s dependence is [50]

�(T )

2π × 109 Hz
= 1

9.74
[1 + 3.3e−55 meV/(KbT )]. (A6)

Its bulk temperature’s dependence is [50]

γ (T )

2π × 106 Hz
= 16.39 + 1.9 × 10−2

(
T

1 K

)3

. (A7)

3. Near-field trapping

� Nanodiamond size: 30 nm.
� Fiber diameter: 715 nm.
� Detuning: 	/2π = ±1 × 1013 Hz.
� Spatial decay of mode 1 (mode EH21): �−1 = 210 nm.
� Intensity for mode 1: I1 = 0.62 mW/μ2.
� Spatial decay of mode 2 (mode HE11): �−2 = 135 nm.
� Intensity for mode 2: I2 = 1.85 mW/μ2.
(i) Trap depth: 43 K.
(ii) Trapping distance from the fiber’s surface: zt = 287 nm.
(iii) Nanodiamond internal temperature: 587 K.
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4. Microsphere cavity

� Frequency of the cavity mode: ωc = ω0 + 	c, where
	c = 1.4 × 1015 Hz.

� Radius of the microsphere cavity: 25 μm.
(i) Cavity intrinsic radiative losses: Q−1

rad = 2.2 × 1018.
(ii) Cavity scattering losses: Q−1

s.s. = 6.6 × 1018 [79].
(iii) Cavity material losses: Q−1

mat = 9 × 1010 [79].
� Cavity mode quality factor: Q = 1010 < 1/(Q−1

s.s. +
Q−1

bulk + Q−1
rad).

(iv) Decay rate of the cavity mode: κ/2π = ωc/(2πQ) =
18.3 × 103 Hz.

(v) Cavity volume: Vc = 820 μm3.
(vi) Decay of the evanescent field of the cavity mode:

1/�c = 283 nm.

5. Resolved sideband regime

� Distance between the nanofiber and the cavity: D =
900 nm.

� Detuning: 	/2π = ±1 × 1013 Hz.
� Spatial decay of mode 1 (mode EH21): �−1 = 210 nm.
� Intensity for mode 1: I1 = 0.62 mW/μ2.
� Spatial decay of mode 2 (mode HE11): �−2 = 135 nm.
� Intensity for mode 2: I2 = 1.85 mW/μ2.
(i) Trap depth: 34 K.
(ii) Trapping distance from the cavity: zt = 612 nm.
(iii) Nanodiamond internal temperature: 587 K.
(iv) Cavity loss rate due to the scattering from the emitters:

κsc/κ = 0.34.
(v) Mechanical decoherence rate due to photon scattering

due to the emitters: �
q
m/2π = 42.3 × 103 Hz.

(vi) Mechanical decoherence rate due to photon scattering
due to the nanosphere: �s

m/2π = 0.63 Hz.
(vii) Single-photon coupling versus cavity loss rate: g0/κ =

1.2 × 10−3.

(viii) Mechanical frequency: ωt/1π = 1 × 105 Hz.
(ix) Mechanical frequency versus cavity loss rate:

ωt/κ = 4.

6. Strong single-photon optomechanical cooperativity (FORT)

� Distance between the nanofiber and the cavity: D =
565 nm.

� Far-off-resonance detuning: |	| = 1 × 1015 Hz.
� Spatial decay of mode 2 (mode HE11): �−2 = 81 nm.
� Intensity for mode 2: I2 = 1.43 mW/μ2.
(i) Spatial decay of mode 3 (cavity mode): �−3 = 85 nm.
� Intensity for mode 3: I3 = 1.72 mW/μ2.
(ii) Trap depth: 10.8 K.
(iii) Trap frequency: ωt/(2π ) = 32.7 × 103 Hz.
(iv) Trapping distance from the fiber’s surface: zt =

270 nm.
(v) Trapping distance from the microsphere cavity’s sur-

face: z′
t = (565 − 270) nm.

(vi) Steady excited-state population: pe = 3.2 × 10−5.
(vii) Nanodiamond internal temperature: T = 385 K.
(viii) Mechanical frequency versus cavity loss rate:

ωt/κ = 1.
(ix) Single-photon coupling versus cavity loss rate: g0/κ =

2.8 × 10−2.
(x) Single-photon cooperativity: C = 1.2.
(xi) Cavity loss rate due to the scattering from the emitters:

κsc/κ = 0.79.
(xii) Mechanical decoherence rate due to photon scattering

from the emitters: �
q
m/2π = 15.83 Hz.

(xiii) Mechanical decoherence rate due to photon scattering
from the nanosphere: �s

m/2π = 76.5 × 10−3 Hz.
(xiv) Mechanical decoherence rate due to photon scattering

from the blackbody radiation: �BB
m /2π = 5.8 × 10−7 Hz.
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