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In this work we present a simple method to reconstruct the complex spectral wave function of a
biphoton, and hence gain complete information about the spectral and temporal properties of a photon pair.
The technique, which relies on quantum interference, is applicable to biphoton states produced with a
monochromatic pump when a shift of the pump frequency produces a shift in the relative frequencies
contributing to the biphoton. We demonstrate an example of such a situation in type-II parametric down
conversion allowing arbitrary paraxial spatial pump and detection modes. Moreover, our test cases
demonstrate the possibility to shape the spectral wave function. This is achieved by choosing the spatial
mode of the pump and of the detection modes, and takes advantage of spatiotemporal correlations.
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With the ability to exhibit nonclassical properties such as
entanglement, photon pairs (or biphotons) are of funda-
mental interest in quantum optics and constitute a useful
resource. Many proposals exploiting this resource require
knowledge of the biphoton quantum state. The complex
spectral wave function, which contains both amplitude and
phase information, provides complete knowledge of the
spectrotemporal state of a photon pair, including the ability
to calculate all observables related to this degree of freedom
and predict interference phenomena. Unsurprisingly then,
the reconstruction of the full complex spectral wave
function has received a lot of attention. Several approaches
have been pursued over the last years, but each proposal
entails experimental challenges. Interferometric methods
require a high level of stability [1–3]. Other methods rely
on nonlinear optical effects, which are inherently inefficient
at the low intensity levels typical of quantum light sources,
requiring very large nonlinearities or high powers [4–6].
In the pioneering work of Hong, Ou, and Mandel (HOM)

[7], the coherence length and time delay between two
photons were measured using quantum interference on a
beam splitter, circumventing the need for optical non-
linearities. In fact, the interference phenomenon has since
then proven useful in a variety of applications, including
quantum teleportation [8], quantum gates [9,10], linear
optics quantum computation [11], Bell-state analyzers [12],
and the measurement of the group velocity of light [13], as
well as of dispersion [14]. Extensions of the HOM
approach also enable the full reconstruction of complex
spectral wave functions: Chen and co-workers [15] rely on
the time resolution of the detectors to directly measure the
delay distributions, and therefore their method is applicable
to very narrow-band biphotons. In contrast, Douce et al.

[16] propose a scheme to measure the biphoton Wigner
function using HOM interference by adding shifts of the
biphoton frequencies. Yet, a practical implementation of
such shifts is not particularly simple or efficient [17].
In this Letter, we propose and implement a variation of

the scheme in Ref. [16] that relies on the ability to
effectively shift the relative frequency of the biphoton state
in the generation process. As an example, our method
allows us to measure the complex spectral wave function,
and consequently also the time delay distribution, for type-
II spontaneous parametric down conversion (SPDC) with a
monochromatic pump in an arbitrary paraxial spatial mode,
after projection of the down-converted photons into a
likewise arbitrary paraxial spatial mode. The assumption
of a monochromatic pump beam means that the frequencies
of signal and idler photons are perfectly anticorrelated,
hence reducing the problem to the determination of a
complex-valued function of one variable. Our scheme is an
extension of a conventional HOM type setup by tuning
either the temperature of the nonlinear crystal or the
pump frequency, so that a quantum interference
coincidence pattern is recorded as a function of path length
difference and crystal temperature or pump frequency.
Both pump frequency tuning and crystal temperature
control produce the same effect: a frequency displacement
of the wave function. Other systems, such as four-wave
mixing in atomic species can be similarly controlled by
tuning the frequencies of the pumps [15]. We show that
multivariable quantum interference patterns can in fact be
used to reconstruct the complex spectral mode function
ΦðΩÞ, which determines the wave function jΨi ¼R
dΩΦðΩÞâ†sðωp=2þΩÞâ†i ðωp=2 −ΩÞj0i. Here, â†mðωÞ

is the creation operator for a photon with frequency ω
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and polarization as indicated by the subscript, and ωp is the
pump frequency.
We also demonstrate that in our chosen experimental

implementation, the spectral wave function can be influ-
enced through the choice of the spatial detection modes,
owing to spatiotemporal correlations. This leads to non-
trivial complex spectra with marked differences to the
standard sinc function [18], making their characterization
worthwhile. The ability to shape the spectral wave function
is important for quantum information and communication
applications, and has already been pursued for single
photons and photon pairs using other approaches [6,19].
The experimental setup used in the implementation of

our reconstruction scheme is shown in Fig. 1. Photon pairs
are generated by pumping a periodically poled potassium
titanyl phosphate crystal with a focused Gaussian beam in a
collinear, type-II down-conversion configuration. They are
then separated with a polarizing beam splitter, fiber
coupled, and are recombined on the two ports of a fiber-
based beam splitter. As in a typical HOM experiment, the
path length difference between the two arms can be swept.
In addition, the temperature of the crystal is actively
stabilized with a precision of �20 mK and may be tuned
to any desired value. The detection mode is experimentally
set to optimize the singles count rates for the chosen pump
beam waist. To create different test cases, we modify the
usual Gaussian detection mode by using diffractive ele-
ments to project the down-converted photons into a
Laguerre-Gaussian mode, or by displacing the nonlinear
crystal along the beam’s propagation axis.

We measure the coincidence count rate as a joint
function of path length difference and crystal temperature.
Equivalently, it is possible to vary the pump laser frequency
instead of the crystal temperature. We consider both cases
in our theoretical analysis.
The normalized coincidence count rates can be modeled

as

RcoincðΔS;T;ωpÞ ¼ t4 þ r4 − 2r2t2Re½fðΔS;T;ωpÞ�; ð1Þ

where ΔS≡ ðSs − SiÞ is the difference between signal and
idler path lengths, T is the crystal temperature, ωp is the
pump frequency, and t and r are the moduli of the
transmission and reflection amplitudes of the HOM beam
splitter, respectively. In addition, the interference term
reads

fðΔS; T;ωpÞ≡
Z

dΩΦðΩ;T;ωpÞΦ�ð−Ω;T;ωpÞ

× exp ðiΔS2Ω=cÞ; ð2Þ
where c is the speed of light in vacuum. The conventional
HOM dip is a slice of such a surface RcoincðΔS; T;ωpÞ
along the ΔS direction, keeping the crystal temperature and
pump frequency fixed. The measured coincidence counts
thus involve our complex wave function of interest

ΦðΩ;T;ωpÞ≡
ZZ

dqsdqiΦfullðqs;qi;Ω;T;ωpÞ

×G�
sðqsÞG�

i ðqiÞ; ð3Þ
where Φfullðqs;qi;Ω;T;ωpÞ is the wave function before
projection into the spatial modes GsðqsÞ and GiðqiÞ with q
being the transverse momenta [20].
However, due to the nature of quantum interference, the

wave function appears in the form of

FðΩ; T;ωpÞ≡ ΦðΩ;T;ωpÞΦ�ð−Ω;T;ωpÞ; ð4Þ
which we refer to as the symmetrized wave function. Since
FðΩ; T;ωpÞ is Hermitian with respect toΩ, fðΔS; T;ωpÞ is
real and from the coincidence rates [recall Eq. (1)]

fðΔS; T;ωpÞ ¼
�

1

2r2t2
½t4 þ r4 − RcoincðΔS; T;ωpÞ�

�
:

ð5Þ
We then obtainFðΩ; T;ωpÞ by taking the Fourier transform
of fðΔS; T;ωpÞ with respect to ΔS:

FðΩ; T;ωpÞ ¼
1

cπ

Z
dΔSfðΔS; T;ωpÞ exp½−ið2ΩÞΔS=c�:

ð6Þ
Because the symmetrization is not isomorphic, Eq. (4) can
in general not be inverted to retrieve the wave function from

FIG. 1 (color online). Experimental setup: an 8 mW, mono-
chromatic 404.25 nm pump beam is focused to a waist of wp ¼
4.3 μm into the temperature-controlled nonlinear crystal (15 mm,
periodically poled potassium titanyl phosphate). The down-
converted light is collimated by a lens after the crystal. The pump
beam is discarded by a longpass filter. The photon pairs (s and i
denoting signal and idler, respectively) are separated by a polar-
izing beam splitter (PBS). A set of wave plates (shown as the gray
line in the signal path) is used to maximize interference. The path
length between the two arms differs by a controllable amount ΔS,
before coupling into single-mode fibers. Alternatively, we can
select different higher order modes with diffractive elements, prior
to the fiber coupling. Finally, the photons pass through a fiber beam
splitter (BS), and coincidences (&) are detected across two
avalanche photodiodes, one for each fiber beam splitter output arm.
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the usual HOM dip, so additional information is required.
One possibility is to extend the measurements by shifting
the relative frequencies of signal and idler. We now show
that the reconstruction is also possible by performing a
temperature or a pump frequency sweep. To see this, we
perform a multivariate Taylor expansion to leading orders
of the wave vector z components for the pump, signal, and
idler (indicated by subscript m), about the values at which
perfect phase matching takes place: at frequencies
ωm ¼ ω0m, crystal temperature T ¼ T0, and transverse
wave vector qm ¼ 0. From the Taylor series approximation,
symmetrized wave functions at different temperatures can
be related by shifting the frequencies, while keeping the
temperature fixed [20]:

ΦðΩ;T0 þΔT;ω0p þΔωpÞΦ�ð−Ω;T0 þΔT;ω0p þΔωpÞ
≈ΦðΩþΔTct þΔωpcωp;T0;ω0pÞ
×Φ�ð−ΩþΔTct þΔωpcωp;T0;ω0pÞ; ð7Þ

where we have defined

ct ≡ −
XT

ð∂ks∂ω − ∂ki∂ωÞ
; ð8Þ

XT ≡
�∂kp
∂T −

∂ks
∂T −

∂ki
∂T þ 2π

½ðΛðT0Þ�2
∂Λ
∂T

�
; ð9Þ

cωp ≡ −
Xω

ð∂ks∂ω − ∂ki∂ωÞ
; ð10Þ

Xω ≡
�∂kp
∂ω −

∂ks
2∂ω −

∂ki
2∂ω

�
: ð11Þ

Here, km are the wave numbers in the crystal (pump, signal,
and idler indicated by subscripts), ωm are the frequencies,
and Λ is the poling period of the crystal. The ∂km=∂ω are
inverse group velocities. All derivatives are evaluated at the
reference temperature T0 and frequencies ωm ¼ ω0m,
m ∈ fp; s; ig. We identify ct and cωp as proportionality
constants between a shift in T or ωp, and Ω. They represent
the measurable sensitivity of the biphoton spectrum to the
crystal temperature and pump wavelength. The complex
mode function can be obtained as a slice through
FðΩ;ΔT;ΔωpÞ:

Φð2ctΔT þ 2cωpΔωp;T0;ω0pÞ

¼ F�ð−ctΔT − cωpΔωp; T0 þ ΔT;ω0p þ ΔωpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFð0; T0;ω0pÞj
p : ð12Þ

Fig. 2 illustrates the data analysis process, when we choose
to do a sweep in the temperature.
In Fig. 3 we demonstrate the use of our reconstruction

method, with theory and experimental results for three test

cases. The test cases all use a Gaussian pump beam with a
beam waist of 4.3 μm, but differ in the detection modes.
These are (a) Gaussians with the crystal centered,
(b) Gaussians with the crystal displaced by 3 mm along
the propagation direction, and (c) the Laguerre Gaussian
modes (azimuthal index, radial index) ¼ ð1; 0Þ, (−1; 0)
with the crystal centered.
We first show the results of our theoretical analysis,

illustrated in the left panel of Fig. 3. From our model of the
nonlinear process and detection, we obtain the expected
spectral wave function directly (black solid line) [20]. We
then calculate the expected quantum interference pattern
Rcoinc, by Eqs. (1) and (2), based on which the spectral
wave function is reconstructed using Eqs. (5), (6), and (12)
(red dotted line). Next, we calculate the spectral and time
delay distributions both from the original and the recon-
structed wave function, shown in black solid and red dotted
lines, respectively. For the experimental results, we mea-
sure the quantum interference pattern and reconstruct the
wave function using Eqs. (5), (6), and (12), from which the
time delay distribution is obtained (red dotted line).
The theoretical analysis allows us to compare the

original and the reconstructed wave function, showing a
good agreement in all cases. However, the reconstruction is
insensitive to those quadratic and higher order phases as a
function of Ω that stem from the propagation of the photon
pairs to the end of the crystal, or through any additional
dispersive elements. This causes an error in the recon-
structed phase [20]. For any particular implementation, the
error is limited and depends on the optical properties and
length of the crystal, as well as the spectral bandwidth. The
spectral bandwidth is influenced by the detection mode,
and our choice of a small detection beam waist corresponds
to a broad spectrum, which allows us to explore limitations
of the method. The deviation in phase cannot be seen easily
in Fig. 3 because it is comparatively small, but there is a
difference that is quadratic in Ω and reaches up to 0.46 rad
for the plotted section of frequencies. This, in turn, has a

elementary 
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Fourier
 transform

IR
Rcoinc(ΔS,ΔT) F(Ω,ΔT) 

C

ΔT

ΔS

ΔT

ΔS
ΔT

Ω

ΔT

Ω

f(ΔS,ΔT) 
IR

elementary 
operations

amplitude phase

Φ(Ω)  
C
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FIG. 2 (color online). Steps to determine ΦðΩÞ from
RcoincðΔS;ΔTÞ. Starting with Rcoinc, the real coincidence counts,
we perform elementary operations to obtain another real function
f [Eq. (5)]. Taking a Fourier transform of f with respect to ΔS,
we get to the complex function F [by Eq. (6)]. The desired
wave function is obtained by taking an appropriate slice of
F [by Eq. (12)].
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visible impact on the time delay distribution in Fig. 3(c),
where a small deviation between reconstructed and calcu-
lated distributions is evident. We note that this lack of
sensitivity of the reconstruction method does not mean that
it is overall only sensitive to linear functions of the phase, as
the phase imparted through the spatial projection can be
arbitrary and is recovered by our method.
The experimentally measured coincidences allow us to

determine the complex spectral wave functions and time
delay distributions of our experimental photon pairs.
Interestingly, they also allow us to identify small imper-
fections in the experiment. For example, a slight off
centering of the crystal in cases (a) and (c) results in an
asymmetry of the coincidence count map with respect to
ΔS and an increased slope of the phase and mean time
delay. In Fig. 3(c), we attribute differences with the
theoretically predicted wave function to the fact that the
radial profile of the theoretical detection mode is slightly
different from the one in the experimental implementation.
A comparison of the three rows in Fig. 3 shows

significant differences between the test cases. The
Gaussian detection with the crystal centered [Fig. 3(a)]
yields a quantum interference pattern that is symmetric
with respect to ΔS, about a value that depends on the time
delay acquired when signal and idler photons propagate
through half the length of the nonlinear birefringent crystal.
The spectrum’s departure from a sinc squared function is

highlighted by its asymmetry. It arises from our use of a
small detection beam waist, and also results in the asym-
metry of the quantum interference pattern in the ΔT
direction. The time delay distribution has a symmetric
peak centered at the time delay acquired by propagation
through half of the crystal. When the crystal is displaced
[Fig. 3(b)], the quantum interference pattern becomes
asymmetric, the phase changes, and the time delay dis-
tribution shifts [21]. Using the Laguerre Gaussian detection
mode with the crystal centered [Fig. 3(c)] changes the
structure of the quantum interference pattern markedly,
even transforming the dip into a peak. The phase of the
wave function is similar to the Gaussian case, but the
spectrum has a side lobe. Interestingly, the time delay
distribution has a dip at the approximate axis of symmetry,
which means that the probability of photons arriving with
their mean time delay is suppressed.
In summary, we have proposed and demonstrated a

method to reconstruct the complex spectral wave function
of a biphoton, using HOM interference for type-II SPDC.
The essence of our method lies in the fact that a change in
temperature or pump frequency is approximately equiv-
alent to a shift of the frequency for the symmetrized mode
function that determines the quantum interference coinci-
dence counts.
A considerable advantage of the method lies in its

simplicity, both in the experimental implementation and
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FIG. 3 (color online). Demonstration of the reconstruction method on three test cases. Theoretical (left panel) and experimental (right
panel) results using as detection modes (a) Gaussians with the crystal centered, (b) Gaussians with the crystal displaced by 3 mm along
the propagation direction, and (c) a pair of Laguerre Gaussian modes (1 0), (−1 0) with the crystal centered. We show, in both cases,
(from left to right) the coincidence counts, the complex spectral wave functions (amplitude in arbitrary units), the spectral distributions
(arbitrary units), and the time delay distributions (arbitrary units). For experiments, we omit the spectral distribution. The red dotted lines
are the reconstruction results, while the black solid lines within the theory section are based on the simulated wave function. Our
experimental conditions are simulated using T0 ¼ 58° C, so that ct ¼ −4.8698 × 1011 ð°C · sÞ−1 and with a detection beam waist
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in the data analysis. Indeed, our technique is not faced with
challenging stabilizations typical of interferometric mea-
surements [3], or the need for high pump powers incurred
by measurements that rely on nonlinear optical effects [5].
As an extension, following the results in Ref. [16],
fðΔS; T;ωpÞ provides the Wigner function in the case
of a mixed state. For the case of a pulsed pump where the
biphoton wave function depends on both signal and idler
frequencies, fðΔS; T;ω0pÞ can provide the Wigner func-
tion in which the sum frequency variable has been traced
out. We note that to appropriately manipulate the biphotons
in the generation process, so that their wave function can be
shifted as shown here, the argument of the phase matching
function must be linear in the relative frequency Ω. This
includes processes such as collinear and noncollinear
type-II SPDC with or without periodic poling [20], but
not type-I collinear degenerate down conversion due to the
group velocities of the two photons being equal. Moreover,
post-emission spectral manipulation, such as the use of
spectral filters or propagation through dispersive elements,
will lead to a faulty reconstruction. A further limitation is
that the reconstruction is unsuccessful at recovering the
limited part of the quadratic and higher order phase that
arises from the propagation of the biphoton to the end of the
crystal [20].
Lastly, the freedom to choose spatial pump and detection

modes offers some interesting possibilities. We have
characterized the spectrotemporal properties of the bipho-
ton, after projection into a spatial mode. Contrary to the
intuitive idea that spatial degrees of freedom should not
play a role, our results show that the choice of detection
modes can have a pronounced effect on the spectrotemporal
properties, in particular due to spatiotemporal correlations
in the biphoton wave function [21,25–27]. Our method
works for arbitrary paraxial pump and projection modes, so
it is possible to influence the detected wave function by
adjusting the modes.
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