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We unveil the relationship between two anomalous scattering processes known as Kerker conditions and the duality
symmetry of Maxwell equations. We generalize these conditions and show that they can be applied to any particle
with cylindrical symmetry, not only to spherical particles as the original Kerker conditions were derived for. We
also explain the role of the optical helicity in these scattering processes. Our results find applications in the field of
metamaterials, where new materials with directional scattering are being explored. © 2013 Optical Society of
America
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In 1958, the United States made a significant advance on
stealth technology by changing the geometry of aircrafts
and significantly reducing the scattering of radar frequen-
cies from them. Since then, lots of developments have
followed up [1]. More recently, with the advent of the
modern field of metamaterials, stealth technology has
boosted its reach. Nowadays, bodies can be camouflaged
not only by changing their geometrical properties, but
also by modifying their optical properties. In this re-
search direction, Kerker et al. [2] made an important con-
tribution in 1983. In their paper, the scattering from a
single sphere was considered and two anomalous scat-
tering conditions were found. The first of them, known
as the first Kerker condition, proved that the back scat-
tered radiation from a sphere can be reduced to zero
when the relative electric permittivity and magnetic per-
meability are equal, i.e., εr � μr . In contrast, the second
Kerker condition, only valid for small spheres, proves
that the forward scattering of a particle can be dimmed
to zero when a1 � −b1, where a1 and b1 are the first order
electric and magnetic Mie coefficients, respectively [3].
This field of research has received a lot of attention re-
cently, as researchers seek to independently control both
the electric and magnetic resonances of different struc-
tures [4,5]. Finally, and long after it was predicted,
Geffrin and co-workers [6] have been able to measure
these two conditions in the microwave regime. In addi-
tion, very recently the first Kerker condition has also
been measured in the dipolar approximation by two ex-
perimental groups. Person et al. [7] have measured the
first Kerker condition using GaAs nanoparticles, whereas
Fu et al. [8] have been able to switch from the first Kerker
condition to the second one by using silicon nanopar-
ticles. Nonetheless, the measurement of the Kerker con-
ditions in the optical regime for arbitrary large particles
still remains an unsolved problem.
In this Letter, we unveil the relationship between the

Kerker conditions and the electromagnetic (EM) duality
symmetry. We will also show that these anomalous scat-
tering conditions are present in a larger variety of par-
ticles, spheres being a particular case. The first Kerker
condition (or zero-backscattering) is an example of a
dual system with cylindrical symmetry, and the second

one (or zero-forward scattering) is an example of what
we call an anti-dual system. These new findings enable
us to generalize the Kerker conditions and extend their
use to macroscopic optical systems, regardless of
their size.

The proof of these statements is intimately related with
optical helicity. Helicity is a property of fundamental par-
ticles. It is defined as the projection of the angular mo-
mentum (AM) onto the normalized linear momentum,
i.e., Λ � J · P∕jPj whose eigenvalues are p � �1 [9]. It
commutes with all the components of the linear and
AM operators, P and J. Helicity is a well defined quantity
for EM fields. For monochromatic fields, it can be written
as the differential operator Λ � �∇×�∕jkj [9]. A very in-
sightful representation of the helicity is obtained in the
Fourier space, i.e., when a beam is decomposed into
plane waves. There, helicity measures the polarization
handedness in all the plane waves. If all the plane waves
have the same circular polarization with respect to its
momentum vector, then the beam will have a well de-
fined helicity, otherwise it will not. Last but not least,
the helicity operator is known to be the generator of
the generalized duality transformations in the source-free
Maxwell equations [10]. Hence, when a system preserves
the helicity of an EM field upon scattering, we will say
that this system is dual. In contrast, if a system flips
the helicity of a field from p to −p upon scattering, we
will say that this system is anti-dual.

Now, as we want to find the relationship between the
Kerker conditions and the EM duality symmetry, we will
center our attention on the interaction between spherical
particles and light beams with well-defined helicity.
Hence, we will use a modified version of the generalized
Lorenz–Mie theory (GLMT) to solve the scattering prob-
lem. The GLMT solves the interaction between an inci-
dent EM field propagating in a lossless, homogeneous,
isotropic medium and a homogeneous isotropic sphere
[11]. The problem is described with three EM fields,
the incident (Ei), the scattered (Esca), and the interior
(Eint) one. The temporal dependence is considered to
be exp�−iωt�. Taking advantage of the rotational sym-
metry of the problem, the three fields are decomposed
into the multipolar basis A�y�

jmz
and then the boundary
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conditions are applied. The multipolar modes are a com-
plete basis of solutions of Maxwell equations and are the
most appropriate modes to describe EM problems with
spherical symmetry. They are eigenvectors of the total
AM operator J2 and one of its projections such as Jz with
respective values j and mz [11]. Furthermore, in GLMT it
is also required that they are eigenvectors of the parity
operator Π. This gives, as a result, two different families
of multipoles, magnetic and electric �y� � �m; e�, with
two different parity values. In this way, these functions
match the symmetries of the sphere and therefore they
can be assumed to scatter independently. This is, how-
ever, not the only possible choice for the multipolar ba-
sis. Instead of splitting the multipolar modes into two
families of modes with different values of the parity, it
is possible to split them into two families of modes with
well defined helicity. These modes with well defined hel-
icity are the ones that we will use in our modified version
of GLMT, as we want to relate the Kerker conditions and
duality symmetry. We will denote these new multipoles
as fA�

jmz
;A−

jmz
g. They can be written as a superposition of

the previous ones fA�m�
jmz

;A�e�
jmz

g:

A�
jmz

�
A�m�

jmz
� iA�e�

jmz���
2

p A−
jmz

�
A�m�

jmz
− iA�e�

jmz���
2

p :(1)

In order to obtain these expressions one must take into
account that ΛA�m�

jmz
� iA�e�

jmz
and ΛA�e�

jmz
� −iA�m�

jmz
[11].

Consequently, it can be checked that ΛA�
jmz

� �A�
jmz

.
Hence, a general decomposition of a beam with a
well defined helicity will be of the form Ei �P

j;mz
αpjmz

Ap
jmz

. Now, if we excite a sphere with a beam
of this sort, the fields can be expressed as:

Ei �
X
j;mz

αpjmz
Ap

jmz

Esca �
X
j;mz

αpjmz

�
aj � bj���

2
p Ap

jmz
� aj − bj���

2
p A−p

jmz

�

Eint �
X
j;mz

αpjmz

�
dj � cj���

2
p Ap

jmz
� dj − cj���

2
p A−p

jmz

�
; (2)

where faj; bj; cj; djg are the Mie coefficients [12], p � �1
is the helicity of the beam, and αpjmz

are the amplitudes
that determine the multipolar content of the incident
beam. In particular, if the incident beam is cylindrically
symmetric, e.g., a focused circularly polarized Gaussian
beam, the field must have a well defined Jz and the ex-
pression for the multipolar amplitudes takes the simpli-
fied form of αpjmz

� f �j; p�δmz;M , where f �j; p� is a general
function of j and p, the Dirac delta forces all amplitudes
withmz ≠ M to be zero and therefore, all amplitudes with
j < M are also zero [11]. The Mie coefficients only
depend on the size parameter of the problem
(x � 2πa∕λ), the relative permeability (μr), and permittiv-
ity (εr) of the sphere with respect to the surrounding
medium. Here, a is the radius of the particle and λ the
wavelength in free space.

Now, it is very important to note that in Eq. (2), the
scattered and interior fields do not generally preserve
the helicity of the incident field (see Figs. 1(a) and 1(b)).
Indeed, although a beam with a well defined helicity such
as Ei impinges on an isotropic and homogeneous sphere,
in general the scattered and the interior fields (Esca and
Eint) will not be eigenvectors of the helicity. This is a con-
sequence of the fact that the two pairs of Mie coefficients
faj; bjg and fcj; djg are not generally equal, and therefore
the amplitudes of the helicity components opposite to the
incident one will be different from zero. However, as it
was proven by Kerker et al. [2], aj�x� � bj�x�∀j; x when
εr � μr . This is the so-called first Kerker condition, and it
implies zero-backscattering from the sphere in consider-
ation. Nonetheless, observing Eq. (2) it can be seen that
the first Kerker condition also implies that the sphere in
consideration will preserve the helicity of the incident
field Ei upon scattering and therefore be dual. Indeed,
for the scattered field, the amplitudes of the components
with opposite helicity to the incident one are given by
αpj;mz

�aj − bj�∕
���
2

p
. Hence, when aj � bj they are all zero,

granting the scattered field with the same helicity as the
incident one. This feature has been overlooked in the
past, and it will enable us to generalize the first Kerker
condition. The first Kerker condition is a particular case
of a more general condition that restores the EM duality
symmetry in material media [10]. In general,

εi
μi

� const⇔Λ conservation; (3)

for any medium made of an arbitrary number of isotropic
and homogeneous submedia i, εi and μi being its electric
permittivity and magnetic permeability. That is, when an
arbitrary light beam impinges on a medium such that the
electric and magnetic fields behave symmetrically, i.e.,
condition (3) is met, the helicity of this beam is not
changed regardless of the geometry of this medium.

Fig. 1. Sketch of the relations between Kerker conditions and
cylindrical and duality symmetry. Large red helix pointing the
scatterer represents an incident plane wave with well defined
helicity. The other helices represent scattered plane waves.
Small red helix has the same helicity as the incoming wave,
while the small blue helix has the opposite helicity. (a) General
scattering process with neither cylindrical nor dual symmetries
is shown. In general, both back and forward scattering have
contributions from both helicities. (b) Scattering from a cylin-
drically symmetric object. In this case, symmetry imposes that
forward scattering is of the same helicity than the incident field,
and backward scattering of opposite helicity. (c) Dual and
cylindrically symmetric system. Only forward scattering is
allowed with the same helicity. (d) Anti-dual system with cylin-
drical symmetry. Only back scattering is allowed with flipped
helicity.
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Now, let us show that the zero-backscattering condi-
tion does not only apply to spherical scatterers, but also
to any system with cylindrical symmetry. We will use a
dual scatterer and impose that it must also be cylindri-
cally symmetric around the z axis. Then, besides helicity,
the Jz of the incident beam must also be preserved.
Under these conditions, a plane wave incident along
the symmetry axis will not backscatter. The proof comes
from the definition of helicity Λ � J · P∕jPj. Imagine that
a plane wave is directed in the z axis (its linear momen-
tum is P � Pzẑ) and has a well defined helicity
Λ � Jz · Pz∕jPzj � Jz � 1. A plane wave with P � −Pzẑ
must necessarily have Λ � −Jz. If the system preserves
Jz and Λ, such a plane wave can never exist. Thus, it is
very natural to generalize the first Kerker condition from
a sphere such that εr � μr to a dual system with cylindri-
cal symmetry, i.e., a system that preserves both the hel-
icity and z component of the AM (see Fig. 1(c)), as both
entities have zero backscattering.
We can also generalize the second Kerker condition,

which predicts zero forward scattering for dipolar mag-
netic particles. In order to do this, let us first recall what
we define as an “anti-dual” system. It is a scatterer whose
scattered light always has an opposite helicity with re-
spect to an incoming field with well defined helicity. That
is, if Ei � P

αjmz
Ap

jmz
, then Esca � P

βjmz
A−p

jmz
. We can

then find the conditions for an anti-dual sphere again
with the help of Eq. (2). For the scattered field, the am-
plitudes of the components with the same helicity as the
incident field are given by αpj;mz

�aj � bj�∕
���
2

p
. Thus, a nec-

essary and sufficient condition for a sphere to be anti-
dual is that aj � −bj∀j. If we now express this condition
in the dipolar approximation, i.e., we only consider the
term with j � 1, we obtain a1 � −b1. As we mentioned
in the introduction, this is the so-called second Kerker
condition.
With this perspective we now understand that the zero-

forward scattering condition for spheres (second Kerker
condition) is again a particular case of a more general
system, a system which is cylindrically symmetric and
anti-dual. Once again, only considering the symmetries
of such a system, it is possible to derive that the forward
scattering must be zero. We use again, as an incident
field, a plane wave travelling in the positive z axis, whose
helicity is Λ � Jz · Pz∕jPzj � 1. Now, as the system is
anti-dual, the helicity in the forward direction will have
to be Λ � −1. However, Jz cannot change since the sys-
tem is cylindrically symmetric, and Pz will not change be-
cause we are considering the plane wave in the forward

direction. Then, this plane wave cannot exist (see
Fig. 1(d)). However, finding an exact anti-dual sphere
is challenging. Some authors have noticed that dielectric,
isotropic, and homogeneous spheres cannot behave as
anti-dual materials in the strict sense, as they would con-
tradict the optical theorem [13,14]. A possible anti-dual
sphere could be made of a material with gain though,
as it can be checked that it would not contradict the
optical theorem.

To conclude, we have unveiled the relationship be-
tween the Kerker conditions and the EM duality sym-
metry. We have generalized them and we have also
proved that the zero-backward and zero-forward scatter-
ing conditions are naturally fulfilled by dual and anti-dual
systems when they are also cylindrically symmetric. We
expect that these results can play an important role in the
next generation of dielectric-based metamaterials [7,8],
as the requirements to achieve these two null-scattering
conditions have been relaxed.
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