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Abstract: We present how the angular momentum of light can play
an important role to induce a dual or anti-dual behaviour on a dielectric
particle. Although the material the particle is made of is not dual, i.e. a
dielectric does not interact with an electrical field in the same way as it does
with a magnetic one, a spherical particle can behave as a dual system when
the correct excitation beam is chosen. We study the conditions under which
this dual or anti-dual behaviour can be induced.
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10. A. Garcı́a-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua,
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nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett. 36, 728–730 (2011).

18. W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985).
19. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Second Edition: Volume 4

(Butterworth-Heinemann, 1982).
20. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum: A

symmetry-based framework for the study of light-matter interactions,” Phys. Rev. A 86, 042103 (2012).
21. A. Messiah, Quantum Mechanics (Dover, New York, 1999).
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1. Introduction

One of the most intriguing mysteries of modern physics is the principle of charge quantization.
As Dirac proved in 1931, the existence of only one magnetic monopole would be sufficient for
all the electric charges to be multiple of a certain value [1]. Nevertheless, magnetic monopoles
are yet to be found [2]. This fact has a very important implication in electromagnetism and
quantum electrodynamics: Maxwell equations are not symmetric with respect to electric and
magnetic fields. In contrast, it is well known that Maxwell equations in free space are sym-
metric under duality transformations [3]. This transformation mixes the electric and magnetic
fields through a continuously varying parameter. Therefore, we can define a generator of this
transformation. Indeed, in 1965 Calkin found that the helicity of a light beam is the genera-
tor of duality transformations [4]. However, the fact that duality symmetry is always broken
for material media has mitigated the use of the helicity of light to probe light-matter interac-
tions. In this research line, a new finding was presented very recently in [5]. It was proven
that the macroscopic Maxwell equations for isotropic and homogeneous media can be dual-
symmetric if some conditions are fulfilled. Microscopically, duality symmetry is still broken,
but the collective effect of all the charges and currents in the medium restores the symmetry
in the macroscopic approximation. In that work, different samples were probed and the non-
conservation of helicity was carefully quantified. In the same way as it happens with any other
generator of symmetries, if the helicity of a light beam is preserved upon interaction with a ma-
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terial medium, this necessarily implies that the system is symmetric under its associated duality
symmetry. We refer to these sort of media as ‘dual’.

In this paper, we propose a method to effectively convert a non-dual arbitrarily large dielec-
tric sphere into a dual particle. This means that if we probe the system with light beams whose
value of the helicity is well defined, the helicity of these light beams will be preserved upon in-
teraction. Our method to restore duality is based on an analytical description of spheres in terms
of Mie coefficients and multipolar modes. Using a method to control the scattered field intro-
duced in [6], we are able to effectively induce duality symmetry on the particle, regardless of its
size and index of refraction. Recently, dielectric particles are starting to gather a lot of interest in
metamaterial sciences [7]. Their lack of losses, their directional properties [8, 9] and their abil-
ity of induce both electric and magnetic dipoles [10,11] are thought to be applicable not only in
metamaterials, but also in nanophotonics and stealth technology. Indeed, it has been proven in
recent experiments that the so-called first Kerker condition of zero backward scattering can be
achieved both in the microwave and optical regime [12–14]. Also, Kerker conditions have been
generalized taken into account the symmetries of the particle. Indeed, in [15] is shown than
a dual and cylindrically symmetric system has zero backscattering, whereas an anti-dual and
cylindrically symmetric system has zero forward scattering. The optical theorem forbids pure
dielectric particles to achieve this last condition [8,16], although a possible alternative would be
to use active particles [15, 17]. In this manuscript we will use this generalization of the Kerker
conditions. Note, that another different generalization of the second Kerker condition can be
found in [8]. There, the generalization consists in the condition which minimizes the forward
scattering of spherical particles in the dipolar regime.

2. Helicity and generalized Lorenz-Mie Theory

In this section, we will provide the reader with the basic concepts and formulae necessary to
understand the methods used in the forthcoming sections. To begin with, we will introduce the
generator of duality transformations - the helicity. The helicity is defined as the projection of
the angular momentum (AM) onto the normalized linear momentum, i.e. Λ = J ·P/|P| [18–20].
It can also be expressed for monochromatic fields as a differential operator: Λ = |k|−1(∇×)
[21]. It has two eigenvectors with respective eigenvalues p = ±1 and it commutes with all the
components of the linear and AM operators, P and J. Finally, in the Fourier space, the helicity
measures the handedness in all the plane waves. If all the plane waves have the same circular
polarization with respect to their own propagation direction, then the beam will have a well
defined helicity, otherwise it will not.

Now, since we will be working with the scattering of spheres, we will use the Generalized
Lorenz-Mie Theory (GLMT) to solve the scattering problem [22]. The GLMT solves the inter-
action between an arbitrary incident EM field propagating in a lossless, homogeneous, isotropic
medium and a homogeneous isotropic sphere. The problem is described with three EM fields:
the incident (Ei) on one hand, and the scattered (Esca) as well as the interior (Eint) on the other
hand. The three fields in the problem are decomposed into multipolar modes A(y)

jmz
and then

the boundary conditions are applied. The multipolar modes are a complete basis of Maxwell
equations and they are particularly suitable for problems with spherical symmetry. They are
eigenvectors of the total AM operator J2 and one of its projections such as Jz, with respective
eigenvalues j and mz [3, 23]. Furthermore, they are eigenvectors of the parity operator Π with
values (y) = (m) for a (−1) j parity, and (y) = (e) for (−1) j+1, where (m) and (e) stand for
magnetic and electric multipole.

We will excite the dielectric spheres with cylindrically symmetric beams, i.e excitation beams
Ei which are eigenvectors of the z component of the AM operator, Jz. Moreover, we will also
want our beams to be eigenvectors of the helicity operator. This will allow us to easily character-
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ize if the particle is dual or not by computing the helicity transfer from the incident component
to the opposite one. The decomposition of these beams into multipoles can be done analytically
when they are paraxial [24], or semi-analytically in the general case [6, 25]. Once the decom-
position of the incident beam is found, the expression of Esca and Eint is given by the GLMT.
Actually, the formal expression of Esca and Eint is almost the same one as Ei. The only differ-
ence comes from the fact that each of the multipolar modes is modulated by a coefficient that
depends on its AM and parity. These are the so-called Mie coefficients [26]. Also, it is worth
noticing that in order to fulfil the boundary conditions the radial functions in the multipolar
modes of the scattered field must be Hankel functions, while in both the incident and interior
fields are Bessel functions [26]. The general expression for the three fields in the problem is the
following one:

Ei =
∞

∑
j=|mz|

i j(2 j+1)1/2Cjmz p

[
A(m)

jmz
+ ipA(e)

jmz

]

Esca =
∞

∑
j=|mz|

i j(2 j+1)1/2Cjmz p

[
b jA

(m)
jmz

+ ipa jA
(e)
jmz

]

Eint =
∞

∑
j=|mz|

i j(2 j+1)1/2Cjmz p

[
c jA

(m)
jmz

+ ipd jA
(e)
jmz

]
(1)

where p = ±1 is the helicity of the incident beam, mz is the angular momentum projection
on the z axis of the incident beam, and Cjmz p is a function that modulates the multipolar con-
tent of the incident field, also known as beam shape coefficients in GLMT literature [22]. As
such, Cjmz p is a function of the incident beam properties: mz and p, but also its transversal mo-
mentum profile. The mathematical expression for Cjmz p is given in [6]. The Mie coefficients{

a j,b j,c j,d j
}

only depend on the size parameter of the problem (x = 2πr/λ ), the relative per-
meability (μr) and permittivity (εr) of the sphere with respect to the surrounding medium. Here,
r is the radius of the particle and λ the wavelength in free space.

Now, as it has been discussed and proven in [15], it is crucial to note that even though the
incident field has a well-defined helicity, such is not the case for the scattered and interior fields.
This is a consequence of the fact that the two pairs of Mie coefficients

{
a j,b j

}
and

{
c j,d j

}
are

not generally equal. In fact, we can split the total energy of the scattered field (wsca) into two
parts. These two parts account for the energy scattered in modes with the same helicity as the
incident field (wsca

p ) and with the opposite helicity (wsca−p):

wsca = ∑
j
(2 j+1)|Cjmz p|2

(|a j|2 + |b j|2
)

(2)

wsca
p = ∑

j
(2 j+1)|Cjmz p|2|a j +b j|2 (3)

wsca
−p = ∑

j
(2 j+1)|Cjmz p|2|a j −b j|2 (4)

Note that in general the scattered field will always carry energy in modes with the opposite
helicity, i.e. wsca−p �= 0. However, if a j(x) = b j(x) ∀ j the particle only scatters energy with the
same helicity as the incident beam, conserving the helicity of the electromagnetic (EM) field
and therefore behaving as a dual medium. Note also that if aj(x) = −b j(x) ∀ j, then wsca

p =
0. That is, the scattered field has the opposite helicity to the incident one. We refer to such
scatterers as anti-dual [15]. It can be proven that a spherical particle will only be dual if μr = εr.
Also, as it has been stated in the introduction, it has been proven that a dielectric material cannot
be anti-dual [8, 16] and that such materials, if they are to exist, could only be made of active
media [17]. Nonetheless, in this article we will relax these definitions in order to address some
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experimentally relevant cases. We will still say that a particle of radius r behaves in a dual or
anti-dual manner at a given wavelength if the scattered energy goes into the the same helicity
component or the opposite one at that wavelength. These two facts have been experimentally
verified in the dipolar regime [12–14], experimentally achieving a1 = b1 and a1 ≈−b1. Below
we show how to extend those conditions to other regimes and also we show that there are
situations where one can even approximately fulfil the anti-dual condition.

3. Induced duality symmetry

In this section we propose a method to induce duality symmetry on dielectric spheres. Our
method is based on the following idea. Suppose that we have a single isotropic and homo-
geneous dielectric sphere with a given size r and index of refraction relative to the non-
absorbing surrounding medium nr. Since the particle is dielectric and the surrounding media
non-absorbing, nr is real. The magnetic permeability can be set to 1 for simplicity. We will
describe the EM response of the sphere with the GLMT. Now let’s suppose that the behaviour
of the particle could be described by only two Mie coefficients of the same order an and bn for
a certain range of the size parameter x. If in that range an is equal to bn, then the particle will be
dual [5, 15, 27]. Nevertheless, the EM response of a particle cannot usually be only described
with two Mie coefficients. And even when that is the case, it is not clear that an can be equal to
bn in that regime. For example, in the dipolar regime [27, 28], the EM response of the particle
can be fully described with a1 and b1 [8, 10]. However, one still needs to verify that when the
condition a1(x1,nr) = b1(x1,nr) holds, the higher multipolar moments are small, so that it is
still valid to use only those two dipolar moments to describe the response of the particle.

In this section, we will show that by using cylindrically symmetric modes, a particle can be
described with only two Mie coefficients (an and bn) for certain regimes. Also, we will show
that the duality condition an = bn can be achieved for arbitrary large n. This duality condition is
achieved in three steps. In the first place, the lower n−1 Mie coefficients are not excited. Then,
the excitation wavelength is chosen so that an = bn. Finally, we only choose the situations where
the helicity change due to the higher order Mie coefficients is negligible.

In order to fulfill this program, we will first describe the behaviour of the Mie coefficients
for dielectric particles, i.e. when the relative index of refraction nr is real, in order to get a
deeper understanding of the phenomena involved. In this case, the Mie coefficients, aj and
b j, that is the multipolar moments of the sphere, are complex and their absolute values are
bounded between zero and one, 0 ≤ {|a j|, |b j|

} ≤ 1. A multipolar moment of order n is very
close to zero for small x, and they start to grow for a value of x which is proportional to the
order of the mode n. The proportionality value depends on nr. For example, when nr = 1.5,
it can be computationally verified that the Mie coefficients approximately start to grow when
x ≈ 4n/5 (see Fig. 1). Then, if x < 4n/5 the multipolar moments of order n are negligible. For
x > 4n/5 their absolute values oscillate between 0 and 1. Hence, on one hand, it is always true
that it exists an interval around x ≈ 4n/5 where an and bn start growing and the higher Mie
coefficients are approximately zero (as they start growing for x ≈ 4(n+1)/5). But on the other
hand, it is impossible that all the first n− 1 Mie coefficients are zero when an and bn are not,
as the first n− 1 Mie coefficients start growing for smaller x, therefore they will typically be
non-zero. This is depicted in Fig. 1, where an and bn are plotted for n = 1,10,20. It can be
observed that all the Mie coefficients follow the pattern described above: their absolute value is
0 until x ≈ 4n/5, and then they oscillate between 0 and 1.

Because of this behaviour, it would seem impossible to fulfil the condition an = bn at the
same time as having all the other Mie coefficients aj,b j = 0 with j �= n. However, it has been
shown in [6,25] that the first n−1 Mie coefficients (and its associated multipolar modes) can be
removed from the scattered field when a beam with |Jz|= n is used to illuminate a sphere. This
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Fig. 1. Norm of the Mie coefficients |an| (in red) and |bn| (in blue) for n = 1,10,20 in a),
b) and c), respectively as a function of the size parameter x = 2πr/λ . The relative index of
refraction is nr = 1.5. It can be seen that all of them start being significantly different from
zero when x ≈ 4n/5.

is a consequence of the conservation rules for the AM. Thus, we can isolate an arbitrary pair
of Mie coefficients an and bn around x ≈ 4n/5: the first n−1 Mie modes can be removed from
the scattering using a beam with |Jz| = n, and the higher modes are naturally attenuated. The
only remaining point that needs to be discussed is the helicity change induced by the higher
order modes. As we have stated previously, if a light beam with |Jz| = n is used, an and bn

are going to be the dominant Mie modes around x ≈ 4n/5. However, generally the condition
an(x∗n,nr) = bn(x∗n,nr) will be met for a particle such that x∗n > 4n/5. If this value x∗n is close
to 4(n+ 1)/5, the Mie coefficients an+1 and bn+1 cannot be ignored. Thus, as stated above,
what needs to be carefully studied is the helicity change induced by an+1, bn+1 and the higher
orders when the condition an = bn is met. This is studied in the next subsections for spheres of
different sizes and materials. The wavelength will be fixed at λ = 780nm unless the contrary is
stated.

3.1. Gaussian excitation

In this subsection, our method to induce duality symmetry in a dielectric sphere is tested with
a Gaussian beam with a well-defined helicity. This beam has |Jz|= 1. Nonetheless, in order to
get some intuition, we first plot |a1 − b1| as a function of the radius of the particle r, and the
relative index of refraction nr. This is depicted in Fig. 2. It can be observed that for any value
of the refractive index, multiple radii of the sphere satisfy a1 = b1. This is a consequence of
the oscillating behaviour of the Mie coefficients seen in Fig. 1. It is also interesting to note that
the larger the refractive index is, the smaller the particle is when a1 = b1. Nonetheless, Fig.
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Fig. 2. Plot of |a1 −b1| as a function of the radius of the sphere r (horizontal axis) and the
relative index of refraction nr (vertical axis). It can be observed that there are three major
regions where |a1 −b1|= 0. The wavelength is set to λ = 780nm.

2 does not provide any information about the higher order modes. Thus, it is not possible to
know if the particle is in the dipolar regime or if, on the other hand, the contributions of the
higher multipolar orders are needed to describe the behaviour of the scattering. To capture this
behaviour, we define the transfer function Tmz p(r,nr):

Tmz p(r,nr) =
wsca−p

wsca
p

=
∑∞

j=mz
(2 j+1)|Cjmz p|2|a j −b j|2

∑∞
j=mz

(2 j+1)|Cjmz p|2|a j +b j|2 (5)

This function is the ratio between the scattered light going to modes with opposite helicity
with respect to the incident light (wsca−p), and the scattered light going to modes with the same
helicity (wsca

p ), for a given angular momentum (mz) and helicity (p) of the incident beam. Hence,
Tmz p(r,nr) varies from 0 to infinity. When Tmz p(r,nr) tends to zero, the particle is dual and all the
scattered light has helicity p: in other words, it fulfils the first generalized Kerker condition [15].
On the contrary, when Tmz p(r,nr) tends to infinity, the particle is anti-dual and all the scattering
is transferred to the cross helicity, −p: it fulfils the generalized second Kerker condition [15].

Figure 3 shows the value of log(T11(r,nr)), i.e. for a focused Gaussian beam with well de-
fined helicity. We use the same range of parameters, {r,nr}, used in Fig. 2. The logarithm is
applied to stand out the dual behaviour of the particle. It can be observed that now there is only
one region in the (r,nr) space where the dual condition is fulfilled, in contrast to Fig. 2 where
three different regions had |a1−b1|= 0. This fact was expected due to the behaviour of the Mie
coefficients explained in Fig. 1. Indeed, a2, b2 and the higher orders are no longer negligible for
large values of r and therefore they induce a helicity transfer from p to −p. Furthermore, it is
interesting to see how the induced duality strongly depends on the relative index of refraction.
It is apparent from Fig. 3 that the dielectric sphere gets closer to the dual condition when nr

gets larger. That means that the helicity of the incoming beam will be better preserved when
particles with a high refractive index embedded in a low refractive index medium are used. In
addition to the duality considerations mentioned above, Fig. 3 also depicts the anti-dual be-
haviour of the particle. Two main features can be observed. First, as it can be deduced from the
colorbar, the anti-dual condition is not achieved as finely as the dual is. That is, the generalized
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Fig. 3. Plot of the log of the Transfer function Tmz p(r,nr) for mz = 1 and p = 1, i.e.
log(T11(r,nr)), as a function of the radius r of the particle (horizontal axis) and the relative
index of refraction nr (vertical axis). The radius of the particle is varied from 100nm (left)
to 300nm (right) and the relative index of refraction goes from 1.2 ≤ nr ≤ 3.

Fig. 4. Multipolar decomposition (|Cjmz p|) for the two different incident beams used in this
article. The function Cjmz p is normalized with the following relation: ∑ j(2 j+1)|Cjmz p|2 =
1 [25]. The insets represent the intensity plots of the modes used for each simulation. The
yellow coloured bars indicate NA=0.25, and the red ones NA=0.9. The multipolar decom-
position of (a) Gaussian beam and (b) LG0,4 is presented. In both cases, the helicity is
chosen to be p = 1. |Cjmz p| is plotted in the y axis and the multipolar order j is plotted in
the x axis.

second Kerker condition is more difficult to achieve. Hence, the forward scattering is never re-
duced as much as the backward is. This feature had already been observed and analysed in [8].
Moreover, it is consistent with the few experiments done until now [12, 14] and with the fact
that dielectric particles cannot be anti-dual, otherwise the forward scattering would be zero and
that is forbidden by the optical theorem [8, 16, 17]. Secondly, if the relative index of refraction
is maintained, the anti-dual condition is held for larger particles than the dual one [10, 29].

Last but not least, there is a subtlety in Eq. (5) that needs to be commented. The transfer
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Fig. 5. a) Plot of log(|a5 −b5|)) as a function of the radius r of the particle (horizontal
axis) and the relative index of refraction nr (vertical axis). b) Plot of the log of the transfer
function Tmz p(r,nr) for mz = 5 and p = 1, log(T51(r,nr)), as a function of r and nr.

function Tmz p(r,nr) depends on the incident beam Ei, through the multipolar expansion Cjmz p.
The beam has been modelled following using the expressions in [6, 25]. That is, the aplanatic
model of a lens [30, 31] is used to focus a paraxial beam (Gaussian or Laguerre-Gaussian).
This ensures that the field in the focus is a full solution of the Maxwell equations and can
be decomposed into multipolar fields using the function Cjmz p. As mentioned earlier, this will
depend not only on the eigenvalues mz and p, but also on its transversal properties. In particular,
the value of the amplitudes Cjmz p will vary depending on how much the beam is focused [6,25,
32, 33]. An example is provided by Fig. 4. In Fig. 4(a), a circularly polarized Gaussian beam
is focused with two different numerical apertures (NA). In yellow, the beam is focused with a
NA= 0.25, and in red a lens of NA= 0.9 is used. In Fig. 4(b), a Laguerre-Gaussian beam with
radial number q = 0 and azimuthal number l = 4 (LG0,4) [34] is depicted, and same colours
are used regarding the focusing strength. It can be seen that the multipolar decomposition is
narrowed down when the NA of the lens is increased [6]. Nevertheless, after carrying out many
simulations, we have realized that, even though Tmz p(r,nr) will be different for each particular
case, the qualitative behaviour that we describe will not change appreciably with the NA of the
focusing lens. Hence, we will use the same NA= 0.9 for the rest of the article.

3.2. Higher AM modes excitation

Now, we will show how the dual and anti-dual properties of the particle will dramatically
change when using a higher angular momentum mode as an incident field. A cylindrically
symmetric beam with a well defined helicity and mz = 5 is used. In particular, the beam is
a left circularly polarized LG0,4 focused with a lens whose NA= 0.9. Its decomposition into
multipoles is given in Fig. 4(b). As we have discussed before, if we excite a sphere with an
eigenvector of Jz with eigenvalue mz, we can describe the EM response of it with a|mz| and b|mz|
as the |mz|− 1 first Mie coefficients do not contribute to the scattering. However, as we did in
the previous subsection, the helicity change induced by the Mie modes whose order is higher
than n = 5 has to be carefully studied.

In Fig. 5(a), it can be observed the shape of log(|a5 −b5|), where the log function has been
used to make the plot more readable. Although Fig. 5(a) has a similar shape to |a1 −b1|, some
differences can be found. The range of sizes for the particles to achieve the dual condition
a5 = b5 has increased for the same interval of nr = [1.2,3]. Before, it spanned 200nm, whereas
now it spans 500nm. As previously discussed, though, this plot does not enable us to see how
dual-symmetric (or anti-dual) the particle is. Therefore, we have plotted log(T51(r,nr)) in Fig.
5(b) to capture this behaviour. As in the j = 1 case, an increase in nr is linked to an increase of
the dual properties of the sphere. Also, it can be inferred from a comparison between Fig. 5(b)
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and Fig. 3, that the dual and anti-dual conditions are fulfilled with a better approximation in this
new occasion. Indeed, the minimum value of the colorbar drops almost an order of magnitude
more, and the maximum value increases more than two orders of magnitude. That is, for some
certain combinations of r and nr, the energy of the scattered field in the modes of opposite
helicity is 10,000 times smaller than the energy going to the original helicity of the incident
field; whereas for some other certain conditions, the scattered field energy is dominated by
modes with the opposite helicity with a ratio of 500 to 1. As in the incident Gaussian beam
case, an increase in nr is linked to an increase of the dual and anti-dual properties of the sphere.
To summarize, some very general conclusions can be reached after a careful look into these
results:

• The larger the relative refraction index of the particle nr is, the more accurately the two
generalized Kerker conditions shown in [15] can be achieved.

• For a constant nr, the bigger the particle is, the more dual (and anti-dual) the particle can
become if high AM modes at the adequate wavelength are used to excite it.

• Fixing the index of refraction and size of the particle, we can always approximately in-
duce the duality symmetry by choosing a right combination of AM and optical frequency
of our laser, regardless of how big the sphere is with respect to the wavelength.

We have confirmed these conclusions by doing calculations similar to the ones presented with
different sizes, wavelengths, refractive indexes, and excitation beams. The results are always
consistent with the conclusion above. Finally, note that in our simulations nr ≤ 3 and λ =
780nm. With these two conditions, the smallest a particle can be to induce duality symmetry is
120nm. This size could be reduced down to 81nm if a λ = 532nm was used.

4. Proposals for experimental implementations

In the previous section, we have compared different scenarios where the EM duality symmetry
can be induced with dielectric spheres and arbitrarily high AM modes. We have seen that it is
possible to induce dual and anti-dual behaviours for certain incident beams Ei, regardless of the
nature of the particle. In this section, we quantify two hypothetical experiments that are feasible
in the laboratory where the duality condition can be achieved. We will consider spheres made of
Silica and Alumina. Their respective refractive indexes at λ = 780nm are nSiO2 = 1.54 [35] and
nAl2O3 = 1.76 [36]. We will suppose that they are embedded in water, therefore their respective

relative refractive index will be nSiO2
r = 1.16 and nAl2O3

r = 1.32. The way to proceed to induce
helicity conservation will be the following. We consider the particle and its embedding medium
as a given system. Then, we will see that we can achieve helicity conservation regardless of the
nature of the particle (size and index of refraction), as long as it is approximately spherical, the
surrounding medium is homogeneous, lossless and isotropic, and considering a tunable laser
with a broad enough wavelength modulation. Once the two parameters r and nr are known,
we can always compute the range of size parameters x that could be achieved with a tunable
laser. Supposing that the tunable laser can offer wavelengths spanning from 700nm to 1000nm
(that would be the case of a Ti:Sapphire laser, for example), the achievable x will belong to the
interval {6.28r(μm), 8.98r(μm)}. Now, as it has been proven in the previous section, there
also exist a large number of radii r∗ (and consequently, x∗) for which the dual condition is
achieved. This is a consequence of the fact that given nr, there exist different radii of particles
rmz that make the particle dual provided adequate excitation beams with angular momentum mz

are used. Hence it is highly probable that regardless of r and nr the dual condition an = bn can
be achieved. In fact, this statement is even more true inasmuch as r gets bigger. To be more
specific, suppose that we have four different spheres. Two of them are made of Silica and the
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other two are made of Alumina. For each of the materials, suppose that the radius of the spheres
are r1 = 325nm and r2 = 700nm. Now, given these sizes and their respective index of refraction,
we can transform the r dependence on the x axis in Fig. 3 and Fig. 5(b) into a x = 2πr/λ
dependence and obtain the wavelength for which the dual condition will be achieved. The

results are presented in Table 1 for the different four combinations
{

rSiO2
1 ,rSiO2

2 ,rAl2O3
1 ,rAl2O3

2

}

of materials and sizes and for the two different excitation beams in consideration mz = 1 and 5
represented in Fig. 4. It can be observed that regardless of the size and the material, the duality
condition can be achieved if a proper excitation beam is used. Moreover, we see that when the
particle is larger, we need higher order beams to reach the duality condition, as long as we want
to use visible wavelengths. Finally, it can also be observed that when the relative refractive index
nr is increased, the duality condition is pushed to longer wavelengths. All this evidence makes
us conclude that dual systems are easily realisable in the laboratory if an arbitrary dielectric
sphere is properly matched with a proper light beam.

Table 1. Wavelengths at which the dual condition is achieved depending on the AM of
the incident beam. The bold wavelengths are those at which the dual condition could be
achieved with the the range of wavelengths available in a Ti:Sap laser. The dual conditions
are achieved with a minimum precision of Tmz p(r,nr) = 2% for the four different cases.

λ (nm) mz = 1 mz = 5

rSiO2
1 859 330

rSiO2
2 1860 710

rAl2O3
1 986 377

rAl2O3
2 2122 812

5. Conclusions

We have shown that the EM duality symmetry can be induced in dielectric spheres thanks to
the use of higher AM modes. Our results show that the increase of relative index of refraction
nr of the sphere and the order mz of the AM mode of the incoming beam help to achieve a
dual sphere. Furthermore, we show the dependence of the radius of the particle with the dual
condition. Finally, we show how flexible this method is by showing how to achieve helicity
preservation with arbitrary dielectric particles.
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